Module derivations and cohomological splitting of adjoint bundles
Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 199-221.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a finite loop space such that the mod $p$ cohomology of the classifying space $BG$ is a polynomial algebra. We consider when the adjoint bundle associated with a $G$-bundle over $M$ splits on mod $p$ cohomology as an algebra. In the case $p = 2$, an obstruction for the adjoint bundle to admit such a splitting is found in the Hochschild homology concerning the mod $2$ cohomologies of $BG$ and $M$ via a module derivation. Moreover the derivation tells us that the splitting is not compatible with the Steenrod operations in general. As a consequence, we can show that the isomorphism class of an $SU(n)$-adjoint bundle over a $4$-dimensional CW complex coincides with the homotopy equivalence class of the bundle.
DOI : 10.4064/fm180-3-1
Keywords: finite loop space mod cohomology classifying space polynomial algebra consider adjoint bundle associated g bundle splits mod cohomology algebra obstruction adjoint bundle admit splitting found hochschild homology concerning mod cohomologies via module derivation moreover derivation tells splitting compatible steenrod operations general consequence isomorphism class adjoint bundle dimensional complex coincides homotopy equivalence class bundle

Akira Kono 1 ; Katsuhiko Kuribayashi 2

1 Department of Mathematics Faculty of Science Kyoto University Kyoto 606, Japan
2 Department of Applied Mathematics Faculty of Science Okayama University of Science Okayama 700-0005, Japan
@article{10_4064_fm180_3_1,
     author = {Akira Kono and Katsuhiko Kuribayashi},
     title = {Module derivations and cohomological splitting of adjoint bundles},
     journal = {Fundamenta Mathematicae},
     pages = {199--221},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2003},
     doi = {10.4064/fm180-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-1/}
}
TY  - JOUR
AU  - Akira Kono
AU  - Katsuhiko Kuribayashi
TI  - Module derivations and cohomological splitting of adjoint bundles
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 199
EP  - 221
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-1/
DO  - 10.4064/fm180-3-1
LA  - en
ID  - 10_4064_fm180_3_1
ER  - 
%0 Journal Article
%A Akira Kono
%A Katsuhiko Kuribayashi
%T Module derivations and cohomological splitting of adjoint bundles
%J Fundamenta Mathematicae
%D 2003
%P 199-221
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-1/
%R 10.4064/fm180-3-1
%G en
%F 10_4064_fm180_3_1
Akira Kono; Katsuhiko Kuribayashi. Module derivations and cohomological splitting of adjoint bundles. Fundamenta Mathematicae, Tome 180 (2003) no. 3, pp. 199-221. doi : 10.4064/fm180-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm180-3-1/

Cité par Sources :