Functions of Baire class one
Fundamenta Mathematicae, Tome 179 (2003) no. 3, pp. 225-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a compact metric space. A real-valued function on
$K$ is said to be of Baire class one (Baire-$1$) if it is the
pointwise limit of a sequence of continuous functions.
We study two well known ordinal indices of Baire-$1$
functions, the oscillation index $\beta$ and the convergence
index $\gamma$. It is shown that these two indices are fully
compatible in the following sense: a Baire-$1$ function $f$
satisfies $\beta(f)\leq\omega ^{\xi_{1}}\cdot\omega^{\xi_{2}}$
for some countable ordinals $\xi_{1}$ and $\xi_{2}$ if and only
if there exists a sequence $(f_{n})$ of Baire-$1$ functions
converging to $f$ pointwise such that
$\sup_{n}\beta(f_{n})\leq\omega^{\xi_{1}}$ and
$\gamma((f_{n}))\leq\omega^{\xi_{2}}$. We also obtain an
extension result for Baire-$1$ functions analogous to the Tietze
Extension Theorem. Finally, it is shown that if $\beta(f)
\leq\omega^{\xi_{1}}$ and $\beta( g) \leq\omega^{\xi_{2}}$, then
$\beta( fg) \leq\omega^{\xi}$, where $\xi=\max\{ \xi
_{1}+\xi_{2},\,\xi_{2}+\xi_{1}\} $. These results do not assume the
boundedness of the functions involved.
Keywords:
compact metric space real valued function said baire class baire pointwise limit sequence continuous functions study known ordinal indices baire functions oscillation index beta convergence index gamma shown these indices fully compatible following sense baire function satisfies beta leq omega cdot omega countable ordinals only there exists sequence baire functions converging pointwise sup beta leq omega gamma leq omega obtain extension result baire functions analogous tietze extension theorem finally shown beta leq omega beta leq omega beta leq omega where max these results assume boundedness functions involved
Affiliations des auteurs :
Denny H. Leung 1 ; Wee-Kee Tang 2
@article{10_4064_fm179_3_3,
author = {Denny H. Leung and Wee-Kee Tang},
title = {Functions of {Baire} class one},
journal = {Fundamenta Mathematicae},
pages = {225--247},
publisher = {mathdoc},
volume = {179},
number = {3},
year = {2003},
doi = {10.4064/fm179-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-3-3/}
}
Denny H. Leung; Wee-Kee Tang. Functions of Baire class one. Fundamenta Mathematicae, Tome 179 (2003) no. 3, pp. 225-247. doi: 10.4064/fm179-3-3
Cité par Sources :