Embedding products of graphs into Euclidean spaces
Fundamenta Mathematicae, Tome 179 (2003) no. 3, pp. 191-198.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any collection of graphs $G_1,\dots,G_N$ we find the minimal dimension $d$ such that the product $G_1\times \dots\times G_N$ is embeddable into ${{\mathbb R}}^d$ (see Theorem 1 below). In particular, we prove that $(K_5)^n$ and $(K_{3,3})^n$ are not embeddable into ${{\mathbb R}}^{2n}$, where $K_5$ and $K_{3,3}$ are the Kuratowski graphs. This is a solution of a problem of Menger from 1929. The idea of the proof is a reduction to a problem from so-called Ramsey link theory: we show that any embedding $\mathop {\rm Lk}\nolimits O\to S^{2n-1}$, where $O$ is a vertex of $(K_5)^n$, has a pair of linked $(n-1)$-spheres.
DOI : 10.4064/fm179-3-1
Keywords: collection graphs dots minimal dimension product times dots times embeddable mathbb see theorem below particular prove embeddable mathbb where kuratowski graphs solution problem menger idea proof reduction problem so called ramsey link theory embedding mathop nolimits n where vertex has pair linked n spheres

Mikhail Skopenkov 1

1 Department of Differential Geometry Faculty of Mechanics and Mathematics Moscow State University Moscow, 119992, Russia
@article{10_4064_fm179_3_1,
     author = {Mikhail Skopenkov},
     title = {Embedding products of graphs
 into {Euclidean} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {191--198},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2003},
     doi = {10.4064/fm179-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-3-1/}
}
TY  - JOUR
AU  - Mikhail Skopenkov
TI  - Embedding products of graphs
 into Euclidean spaces
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 191
EP  - 198
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm179-3-1/
DO  - 10.4064/fm179-3-1
LA  - en
ID  - 10_4064_fm179_3_1
ER  - 
%0 Journal Article
%A Mikhail Skopenkov
%T Embedding products of graphs
 into Euclidean spaces
%J Fundamenta Mathematicae
%D 2003
%P 191-198
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm179-3-1/
%R 10.4064/fm179-3-1
%G en
%F 10_4064_fm179_3_1
Mikhail Skopenkov. Embedding products of graphs
 into Euclidean spaces. Fundamenta Mathematicae, Tome 179 (2003) no. 3, pp. 191-198. doi : 10.4064/fm179-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm179-3-1/

Cité par Sources :