On transcendental automorphisms of algebraic foliations
Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 179-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the group $\mathop{\rm {Aut}}({\cal F})$ of (self) isomorphisms of a
holomorphic foliation ${\cal F}$ with singularities on a complex
manifold. We prove, for instance, that for a polynomial
foliation on $\mathbb C^2$ this group consists of algebraic elements
provided that the line at infinity $\mathbb C P(2) \setminus \mathbb C^2$ is
not invariant under the foliation. If in addition ${\cal F}$ is of
general type (cf. \cite{Vitorio}) then $\mathop{\rm {Aut}}({\cal F})$ is
finite. For a foliation with hyperbolic singularities at
infinity, if there is a transcendental automorphism then the
foliation is either linear logarithmic, Riccati or chaotic
(cf. Definition~1). We also give a
description of foliations admitting an invariant algebraic curve
$C\subset \mathbb{C}^2$ with a transcendental foliation automorphism.
Keywords:
study group mathop aut cal self isomorphisms holomorphic foliation cal singularities complex manifold prove instance polynomial foliation mathbb group consists algebraic elements provided line infinity mathbb setminus mathbb invariant under foliation addition cal general type cite vitorio mathop aut cal finite foliation hyperbolic singularities infinity there transcendental automorphism foliation either linear logarithmic riccati chaotic definition description foliations admitting invariant algebraic curve subset mathbb transcendental foliation automorphism
Affiliations des auteurs :
B. Scárdua 1
@article{10_4064_fm179_2_5,
author = {B. Sc\'ardua},
title = {On transcendental automorphisms of algebraic foliations},
journal = {Fundamenta Mathematicae},
pages = {179--190},
publisher = {mathdoc},
volume = {179},
number = {2},
year = {2003},
doi = {10.4064/fm179-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-5/}
}
B. Scárdua. On transcendental automorphisms of algebraic foliations. Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 179-190. doi: 10.4064/fm179-2-5
Cité par Sources :