The twisted products of spheres that have the fixed point property
Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 157-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By a twisted product of $S^{n}$ we mean a closed, 1-connected $2n$-manifold $M$ whose integral cohomology ring is isomorphic to that of $S^{n}\times S^{n}$, $n\geq 3$. We list all such spaces that have the fixed point property.
DOI : 10.4064/fm179-2-3
Keywords: twisted product mean closed connected n manifold whose integral cohomology ring isomorphic times geq list spaces have fixed point property

Haibao Duan 1 ; Boju Jiang 2

1 Institute of Mathematics Chinese Academy of Sciences Beijing 100080, P.R. China
2 Department of Mathematics Peking University Beijing 100871, P.R. China
@article{10_4064_fm179_2_3,
     author = {Haibao Duan and Boju Jiang},
     title = {The twisted products of
  spheres that have the fixed point property},
     journal = {Fundamenta Mathematicae},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2003},
     doi = {10.4064/fm179-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/}
}
TY  - JOUR
AU  - Haibao Duan
AU  - Boju Jiang
TI  - The twisted products of
  spheres that have the fixed point property
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 157
EP  - 168
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/
DO  - 10.4064/fm179-2-3
LA  - en
ID  - 10_4064_fm179_2_3
ER  - 
%0 Journal Article
%A Haibao Duan
%A Boju Jiang
%T The twisted products of
  spheres that have the fixed point property
%J Fundamenta Mathematicae
%D 2003
%P 157-168
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/
%R 10.4064/fm179-2-3
%G en
%F 10_4064_fm179_2_3
Haibao Duan; Boju Jiang. The twisted products of
  spheres that have the fixed point property. Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 157-168. doi : 10.4064/fm179-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/

Cité par Sources :