The twisted products of
spheres that have the fixed point property
Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 157-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By a twisted product of $S^{n}$ we mean a closed, 1-connected $2n$-manifold $M$ whose integral cohomology ring is isomorphic to that of $S^{n}\times S^{n}$, $n\geq 3$. We list all such spaces that have the fixed point property.
Keywords:
twisted product mean closed connected n manifold whose integral cohomology ring isomorphic times geq list spaces have fixed point property
Affiliations des auteurs :
Haibao Duan 1 ; Boju Jiang 2
@article{10_4064_fm179_2_3,
author = {Haibao Duan and Boju Jiang},
title = {The twisted products of
spheres that have the fixed point property},
journal = {Fundamenta Mathematicae},
pages = {157--168},
publisher = {mathdoc},
volume = {179},
number = {2},
year = {2003},
doi = {10.4064/fm179-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/}
}
TY - JOUR AU - Haibao Duan AU - Boju Jiang TI - The twisted products of spheres that have the fixed point property JO - Fundamenta Mathematicae PY - 2003 SP - 157 EP - 168 VL - 179 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-3/ DO - 10.4064/fm179-2-3 LA - en ID - 10_4064_fm179_2_3 ER -
Haibao Duan; Boju Jiang. The twisted products of spheres that have the fixed point property. Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 157-168. doi: 10.4064/fm179-2-3
Cité par Sources :