The null ideal restricted to
some non-null set may be $\aleph _1$-saturated
Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 97-129
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Our main result is that possibly some non-null set of reals cannot be divided into uncountably many non-null sets. We also deal with a non-null set of real, the graph of any function from which is null, and deal with our iterations somewhat more generally.
Keywords:
main result possibly non null set reals cannot divided uncountably many non null sets non null set real graph function which null iterations somewhat generally
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm179_2_1,
author = {Saharon Shelah},
title = {The null ideal restricted to
some non-null set may be $\aleph _1$-saturated},
journal = {Fundamenta Mathematicae},
pages = {97--129},
publisher = {mathdoc},
volume = {179},
number = {2},
year = {2003},
doi = {10.4064/fm179-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-1/}
}
TY - JOUR AU - Saharon Shelah TI - The null ideal restricted to some non-null set may be $\aleph _1$-saturated JO - Fundamenta Mathematicae PY - 2003 SP - 97 EP - 129 VL - 179 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm179-2-1/ DO - 10.4064/fm179-2-1 LA - en ID - 10_4064_fm179_2_1 ER -
Saharon Shelah. The null ideal restricted to some non-null set may be $\aleph _1$-saturated. Fundamenta Mathematicae, Tome 179 (2003) no. 2, pp. 97-129. doi: 10.4064/fm179-2-1
Cité par Sources :