Relatively complete ordered fields
without integer parts
Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 17-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a convenient equivalent criterion for monotone completeness of ordered fields of generalized power series $[[F^G]]$ with exponents in a totally ordered Abelian group $G$ and coefficients in an ordered field $F$. This enables us to provide examples of such fields (monotone complete or otherwise) with or without integer parts, i.e. discrete subrings approximating each element within 1. We include a new and more straightforward proof that $[[F^G]]$ is always Scott complete. In contrast, the Puiseux series field with coefficients in $F$ always has proper dense field extensions.
Keywords:
prove convenient equivalent criterion monotone completeness ordered fields generalized power series exponents totally ordered abelian group coefficients ordered field enables provide examples fields monotone complete otherwise without integer parts discrete subrings approximating each element within include straightforward proof always scott complete contrast puiseux series field coefficients always has proper dense field extensions
Affiliations des auteurs :
Mojtaba Moniri 1 ; Jafar S. Eivazloo 1
@article{10_4064_fm179_1_2,
author = {Mojtaba Moniri and Jafar S. Eivazloo},
title = {Relatively complete ordered fields
without integer parts},
journal = {Fundamenta Mathematicae},
pages = {17--25},
publisher = {mathdoc},
volume = {179},
number = {1},
year = {2003},
doi = {10.4064/fm179-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-2/}
}
TY - JOUR AU - Mojtaba Moniri AU - Jafar S. Eivazloo TI - Relatively complete ordered fields without integer parts JO - Fundamenta Mathematicae PY - 2003 SP - 17 EP - 25 VL - 179 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-2/ DO - 10.4064/fm179-1-2 LA - en ID - 10_4064_fm179_1_2 ER -
Mojtaba Moniri; Jafar S. Eivazloo. Relatively complete ordered fields without integer parts. Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 17-25. doi: 10.4064/fm179-1-2
Cité par Sources :