On a universality property of some abelian Polish groups
Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that every abelian Polish group is the topological factor group of a closed subgroup of the full unitary group of a separable Hilbert space with the strong operator topology. It follows that all orbit equivalence relations induced by abelian Polish group actions are Borel reducible to some orbit equivalence relations induced by actions of the unitary group.
Keywords:
every abelian polish group topological factor group closed subgroup full unitary group separable hilbert space strong operator topology follows orbit equivalence relations induced abelian polish group actions borel reducible orbit equivalence relations induced actions unitary group
Affiliations des auteurs :
Su Gao 1 ; Vladimir Pestov 2
@article{10_4064_fm179_1_1,
author = {Su Gao and Vladimir Pestov},
title = {On a universality property of some abelian {Polish} groups},
journal = {Fundamenta Mathematicae},
pages = {1--15},
publisher = {mathdoc},
volume = {179},
number = {1},
year = {2003},
doi = {10.4064/fm179-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-1/}
}
TY - JOUR AU - Su Gao AU - Vladimir Pestov TI - On a universality property of some abelian Polish groups JO - Fundamenta Mathematicae PY - 2003 SP - 1 EP - 15 VL - 179 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm179-1-1/ DO - 10.4064/fm179-1-1 LA - en ID - 10_4064_fm179_1_1 ER -
Su Gao; Vladimir Pestov. On a universality property of some abelian Polish groups. Fundamenta Mathematicae, Tome 179 (2003) no. 1, pp. 1-15. doi: 10.4064/fm179-1-1
Cité par Sources :