A big symmetric planar set with small
category projections
Fundamenta Mathematicae, Tome 178 (2003) no. 3, pp. 237-253
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that under appropriate set-theoretic assumptions
(which follow from Martin's axiom and the continuum hypothesis)
there exists a nowhere meager set
$A\subset{\mathbb R}$ such that
(i) the set
$\{c\in{\mathbb R}\colon\, \pi[({f+c})
\cap (A\times A)]\hbox{ is not meager}\}$ is
meager for each continuous nowhere constant function
$f\colon\,{\mathbb R}\to{\mathbb R}$,
(ii) the set
$\{c\in{\mathbb R}\colon\, (f+c)\cap (A\times A)=\emptyset\}$ is nowhere meager
for each continuous function $f\colon\,{\mathbb R}\to{\mathbb R}$.The existence of such a set also follows from the principle CPA,
which holds in the iterated perfect set model.
We also prove that the existence of a set $A$ as in (i)
cannot be proved in ZFC alone even when we restrict our attention to
homeomorphisms
of $\mathbb R$. On the other hand, for the class of real-analytic functions
a Bernstein set $A$ satisfying (ii) exists in ZFC.
Keywords:
under appropriate set theoretic assumptions which follow martins axiom continuum hypothesis there exists nowhere meager set subset mathbb set mathbb colon cap times hbox meager meager each continuous nowhere constant function colon mathbb mathbb set mathbb colon cap times emptyset nowhere meager each continuous function colon mathbb mathbb existence set follows principle cpa which holds iterated perfect set model prove existence set cannot proved zfc alone even restrict attention homeomorphisms mathbb other class real analytic functions bernstein set satisfying exists zfc
Affiliations des auteurs :
Krzysztof Ciesielski 1 ; Tomasz Natkaniec 2
@article{10_4064_fm178_3_4,
author = {Krzysztof Ciesielski and Tomasz Natkaniec},
title = {A big symmetric planar set with small
category projections},
journal = {Fundamenta Mathematicae},
pages = {237--253},
year = {2003},
volume = {178},
number = {3},
doi = {10.4064/fm178-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm178-3-4/}
}
TY - JOUR AU - Krzysztof Ciesielski AU - Tomasz Natkaniec TI - A big symmetric planar set with small category projections JO - Fundamenta Mathematicae PY - 2003 SP - 237 EP - 253 VL - 178 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm178-3-4/ DO - 10.4064/fm178-3-4 LA - en ID - 10_4064_fm178_3_4 ER -
Krzysztof Ciesielski; Tomasz Natkaniec. A big symmetric planar set with small category projections. Fundamenta Mathematicae, Tome 178 (2003) no. 3, pp. 237-253. doi: 10.4064/fm178-3-4
Cité par Sources :