The ${\Bbb Z}_2$-cohomology cup-length of real flag manifolds
Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 143-158
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using fiberings, we
determine the cup-length and the Lyusternik–Shnirel'man category
for some infinite families of real flag manifolds
$O(n_1+\dots+n_q)/ O(n_1)\times\dots\times O(n_q)$, $q\geq 3$. We
also give, or describe ways to obtain, interesting estimates
for the cup-length of any
$O(n_1+\dots+n_q)/O(n_1)\times\dots\times O(n_q)$, $q\geq 3$. To
present another approach (combining well with the “method of
fiberings”), we generalize to the real flag manifolds
Stong's approach used for calculations in the ${\mathbb Z}_2$-cohomology
algebra of the Grassmann manifolds.
Keywords:
using fiberings determine cup length lyusternik shnirelman category infinite families real flag manifolds dots times dots times geq describe ways obtain interesting estimates cup length dots times dots times geq present another approach combining method fiberings generalize real flag manifolds stongs approach calculations mathbb cohomology algebra grassmann manifolds
Affiliations des auteurs :
Július Korbaš 1 ; Juraj Lörinc 2
@article{10_4064_fm178_2_4,
author = {J\'ulius Korba\v{s} and Juraj L\"orinc},
title = {The ${\Bbb Z}_2$-cohomology cup-length of real flag manifolds},
journal = {Fundamenta Mathematicae},
pages = {143--158},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2003},
doi = {10.4064/fm178-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm178-2-4/}
}
TY - JOUR
AU - Július Korbaš
AU - Juraj Lörinc
TI - The ${\Bbb Z}_2$-cohomology cup-length of real flag manifolds
JO - Fundamenta Mathematicae
PY - 2003
SP - 143
EP - 158
VL - 178
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm178-2-4/
DO - 10.4064/fm178-2-4
LA - en
ID - 10_4064_fm178_2_4
ER -
Július Korbaš; Juraj Lörinc. The ${\Bbb Z}_2$-cohomology cup-length of real flag manifolds. Fundamenta Mathematicae, Tome 178 (2003) no. 2, pp. 143-158. doi: 10.4064/fm178-2-4
Cité par Sources :