A Pieri-type formula for even orthogonal Grassmannians
Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 49-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the cohomology ring of the Grassmannian $G$ of isotropic $n$-subspaces of a complex $2m$-dimensional vector space, endowed with a nondegenerate orthogonal form (here $1\le n m$). We state and prove a formula giving the Schubert class decomposition of the cohomology products in $H^*(G)$ of general Schubert classes by “special Schubert classes”, i.e. the Chern classes of the dual of the tautological vector bundle of rank $n$ on $G$. We discuss some related properties of reduced decompositions of “barred permutations” with even numbers of bars, and divided differences associated with the even orthogonal group $SO(2m)$.
Keywords:
study cohomology ring grassmannian isotropic n subspaces complex m dimensional vector space endowed nondegenerate orthogonal form here state prove formula giving schubert class decomposition cohomology products * general schubert classes special schubert classes chern classes dual tautological vector bundle rank discuss related properties reduced decompositions barred permutations even numbers bars divided differences associated even orthogonal group
Affiliations des auteurs :
Piotr Pragacz 1 ; Jan Ratajski 2
@article{10_4064_fm178_1_2,
author = {Piotr Pragacz and Jan Ratajski},
title = {A {Pieri-type} formula for even orthogonal {Grassmannians}},
journal = {Fundamenta Mathematicae},
pages = {49--96},
publisher = {mathdoc},
volume = {178},
number = {1},
year = {2003},
doi = {10.4064/fm178-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm178-1-2/}
}
TY - JOUR AU - Piotr Pragacz AU - Jan Ratajski TI - A Pieri-type formula for even orthogonal Grassmannians JO - Fundamenta Mathematicae PY - 2003 SP - 49 EP - 96 VL - 178 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm178-1-2/ DO - 10.4064/fm178-1-2 LA - en ID - 10_4064_fm178_1_2 ER -
Piotr Pragacz; Jan Ratajski. A Pieri-type formula for even orthogonal Grassmannians. Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 49-96. doi: 10.4064/fm178-1-2
Cité par Sources :