Cohomology of the boundary of Siegel
modular varieties of degree two, with applications
Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 1-47
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal A_{2}(n) = \varGamma _{2}(n)\backslash {\mathfrak S}_{2}$ be the
quotient of
Siegel's space of degree 2 by the principal congruence subgroup of level
$n$ in ${\bf Sp}(4, \mathbb Z)$. This is the moduli space of principally polarized
abelian
surfaces with a level $n$ structure. Let $\mathcal A_{2}(n)^{\ast}$ denote the Igusa
compactification of this space, and
$\partial\mathcal A_2(n)^{\ast} = \mathcal A_2(n)^{\ast} - \mathcal A_2(n)$
its “boundary”. This is a divisor with normal crossings.
The main result of
this paper is the determination of
${\rm H}(\partial\mathcal A_2(n)^{\ast})$ as a module over
the
finite group $\varGamma _{2}(1) / \varGamma _{2}(n)$. As an
application we
compute the
cohomology of the arithmetic group $\varGamma _{2}(3)$.
Keywords:
mathcal vargamma backslash mathfrak quotient siegels space degree principal congruence subgroup level mathbb moduli space principally polarized abelian surfaces level structure mathcal ast denote igusa compactification space partial mathcal ast mathcal ast mathcal its boundary divisor normal crossings main result paper determination partial mathcal ast module finite group vargamma vargamma application compute cohomology arithmetic group vargamma
Affiliations des auteurs :
J. William Hoffman 1 ; Steven H. Weintraub 2
@article{10_4064_fm178_1_1,
author = {J. William Hoffman and Steven H. Weintraub},
title = {Cohomology of the boundary of {Siegel
modular} varieties of degree two, with applications},
journal = {Fundamenta Mathematicae},
pages = {1--47},
publisher = {mathdoc},
volume = {178},
number = {1},
year = {2003},
doi = {10.4064/fm178-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm178-1-1/}
}
TY - JOUR AU - J. William Hoffman AU - Steven H. Weintraub TI - Cohomology of the boundary of Siegel modular varieties of degree two, with applications JO - Fundamenta Mathematicae PY - 2003 SP - 1 EP - 47 VL - 178 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm178-1-1/ DO - 10.4064/fm178-1-1 LA - en ID - 10_4064_fm178_1_1 ER -
%0 Journal Article %A J. William Hoffman %A Steven H. Weintraub %T Cohomology of the boundary of Siegel modular varieties of degree two, with applications %J Fundamenta Mathematicae %D 2003 %P 1-47 %V 178 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm178-1-1/ %R 10.4064/fm178-1-1 %G en %F 10_4064_fm178_1_1
J. William Hoffman; Steven H. Weintraub. Cohomology of the boundary of Siegel modular varieties of degree two, with applications. Fundamenta Mathematicae, Tome 178 (2003) no. 1, pp. 1-47. doi: 10.4064/fm178-1-1
Cité par Sources :