Generating varieties for the triple loop space
of classical Lie groups
Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 269-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $G= SU(n), Sp(n)$ or $\mathop {\rm Spin}\nolimits (n)$, let $C_G (SU(2))$ be the centralizer of a certain $SU(2)$ in $G$. We have a natural map $J: G/C_G (SU(2)) \rightarrow {\mit \Omega }_0^3 G$. For a generator $\alpha $ of $H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2)$, we describe $J_\ast (\alpha )$. In particular, it is proved that $J_\ast : H_\ast (G/C_G (SU(2)); {{\mathbb Z}}/2) \rightarrow H_\ast ({\mit \Omega }_0^3G;{{\mathbb Z}}/2)$ is injective.
Keywords:
mathop spin nolimits centralizer certain have natural map rightarrow mit omega generator alpha ast mathbb describe ast alpha particular proved ast ast mathbb rightarrow ast mit omega mathbb injective
Affiliations des auteurs :
Yasuhiko Kamiyama 1
@article{10_4064_fm177_3_6,
author = {Yasuhiko Kamiyama},
title = {Generating varieties for the triple loop space
of classical {Lie} groups},
journal = {Fundamenta Mathematicae},
pages = {269--283},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2003},
doi = {10.4064/fm177-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-6/}
}
TY - JOUR AU - Yasuhiko Kamiyama TI - Generating varieties for the triple loop space of classical Lie groups JO - Fundamenta Mathematicae PY - 2003 SP - 269 EP - 283 VL - 177 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-6/ DO - 10.4064/fm177-3-6 LA - en ID - 10_4064_fm177_3_6 ER -
Yasuhiko Kamiyama. Generating varieties for the triple loop space of classical Lie groups. Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 269-283. doi: 10.4064/fm177-3-6
Cité par Sources :