Three-quantifier sentences
Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 213-240
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a complete proof that all $3$-quantifier sentences in the primitive notation of set theory ($\in ,=$), are decided in ZFC, and in fact in a weak fragment of ZF without the power set axiom. We obtain information concerning witnesses of $2$-quantifier formulas with one free variable. There is a $5$-quantifier sentence that is not decided in ZFC (see [2]).
Keywords:
complete proof quantifier sentences primitive notation set theory decided zfc weak fragment without power set axiom obtain information concerning witnesses quantifier formulas variable there quantifier sentence decided zfc see
Affiliations des auteurs :
Harvey M. Friedman 1
@article{10_4064_fm177_3_3,
author = {Harvey M. Friedman},
title = {Three-quantifier sentences},
journal = {Fundamenta Mathematicae},
pages = {213--240},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2003},
doi = {10.4064/fm177-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-3/}
}
Harvey M. Friedman. Three-quantifier sentences. Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 213-240. doi: 10.4064/fm177-3-3
Cité par Sources :