How many clouds cover the plane?
Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 209-211.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The plane can be covered by $n+2$ clouds iff $2^{\aleph _0} \leq \aleph _n$.
DOI : 10.4064/fm177-3-2
Keywords: plane covered clouds aleph leq aleph

James H. Schmerl 1

1 Department of Mathematics University of Connecticut Storrs, CT 06269, U.S.A.
@article{10_4064_fm177_3_2,
     author = {James H. Schmerl},
     title = {How many clouds cover the plane?},
     journal = {Fundamenta Mathematicae},
     pages = {209--211},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2003},
     doi = {10.4064/fm177-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-2/}
}
TY  - JOUR
AU  - James H. Schmerl
TI  - How many clouds cover the plane?
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 209
EP  - 211
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-2/
DO  - 10.4064/fm177-3-2
LA  - en
ID  - 10_4064_fm177_3_2
ER  - 
%0 Journal Article
%A James H. Schmerl
%T How many clouds cover the plane?
%J Fundamenta Mathematicae
%D 2003
%P 209-211
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-2/
%R 10.4064/fm177-3-2
%G en
%F 10_4064_fm177_3_2
James H. Schmerl. How many clouds cover the plane?. Fundamenta Mathematicae, Tome 177 (2003) no. 3, pp. 209-211. doi : 10.4064/fm177-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm177-3-2/

Cité par Sources :