Equidecomposability of Jordan domains under groups of isometries
Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 151-173.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G_d$ denote the isometry group of ${\mathbb R}^d.$ We prove that if $G$ is a paradoxical subgroup of $G_d$ then there exist $G$-equidecomposable Jordan domains with piecewise smooth boundaries and having different volumes. On the other hand, we construct a system ${\cal F}_d$ of Jordan domains with differentiable boundaries and of the same volume such that ${\cal F}_d$ has the cardinality of the continuum, and for every amenable subgroup $G$ of $G_d,$ the elements of ${\cal F}_d$ are not $G$-equidecomposable; moreover, their interiors are not $G$-equidecomposable as geometric bodies. As a corollary, we obtain Jordan domains $A,B\subset {\mathbb R}^2$ with differentiable boundaries and of the same area such that $A$ and $B$ are not equidecomposable, and $\mathop {\rm int} A$ and $\mathop {\rm int} B$ are not equidecomposable as geometric bodies. This gives a partial solution to a problem of Jan Mycielski.
DOI : 10.4064/fm177-2-4
Keywords: denote isometry group mathbb prove paradoxical subgroup there exist g equidecomposable jordan domains piecewise smooth boundaries having different volumes other construct system cal jordan domains differentiable boundaries volume cal has cardinality continuum every amenable subgroup elements cal g equidecomposable moreover their interiors g equidecomposable geometric bodies corollary obtain jordan domains subset mathbb differentiable boundaries area equidecomposable mathop int mathop int equidecomposable geometric bodies gives partial solution problem jan mycielski

M. Laczkovich 1

1 Department of Analysis Eötvös Loránd University Pázmány Péter sétány 1/C 1117 Budapest, Hungary and Department of Mathematics University College London Gower Street London, WC1E 6BT, England
@article{10_4064_fm177_2_4,
     author = {M. Laczkovich},
     title = {Equidecomposability of {Jordan} domains
 under groups of isometries},
     journal = {Fundamenta Mathematicae},
     pages = {151--173},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2003},
     doi = {10.4064/fm177-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-4/}
}
TY  - JOUR
AU  - M. Laczkovich
TI  - Equidecomposability of Jordan domains
 under groups of isometries
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 151
EP  - 173
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-4/
DO  - 10.4064/fm177-2-4
LA  - en
ID  - 10_4064_fm177_2_4
ER  - 
%0 Journal Article
%A M. Laczkovich
%T Equidecomposability of Jordan domains
 under groups of isometries
%J Fundamenta Mathematicae
%D 2003
%P 151-173
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-4/
%R 10.4064/fm177-2-4
%G en
%F 10_4064_fm177_2_4
M. Laczkovich. Equidecomposability of Jordan domains
 under groups of isometries. Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 151-173. doi : 10.4064/fm177-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-4/

Cité par Sources :