On simple partitions of $[\kappa ]^{\kappa }$
Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 139-149.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every uncountable regular cardinal $\kappa $, every $\kappa $-Borel partition of the space of all members of $[\kappa ]^{\kappa }$ whose enumerating function does not have fixed points has a homogeneous club.
DOI : 10.4064/fm177-2-3
Mots-clés : every uncountable regular cardinal kappa every kappa borel partition space members kappa kappa whose enumerating function does have fixed points has homogeneous club

David Asperó 1

1 Institut für Formale Logik Universität Wien Währingerstr., 25 A-1090 Wien, Austria
@article{10_4064_fm177_2_3,
     author = {David Asper\'o},
     title = {On simple partitions of $[\kappa ]^{\kappa }$},
     journal = {Fundamenta Mathematicae},
     pages = {139--149},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2003},
     doi = {10.4064/fm177-2-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-3/}
}
TY  - JOUR
AU  - David Asperó
TI  - On simple partitions of $[\kappa ]^{\kappa }$
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 139
EP  - 149
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-3/
DO  - 10.4064/fm177-2-3
LA  - fr
ID  - 10_4064_fm177_2_3
ER  - 
%0 Journal Article
%A David Asperó
%T On simple partitions of $[\kappa ]^{\kappa }$
%J Fundamenta Mathematicae
%D 2003
%P 139-149
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-3/
%R 10.4064/fm177-2-3
%G fr
%F 10_4064_fm177_2_3
David Asperó. On simple partitions of $[\kappa ]^{\kappa }$. Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 139-149. doi : 10.4064/fm177-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-3/

Cité par Sources :