A classification of inverse limit spaces of tent maps
with periodic critical points
Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 95-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We work within the one-parameter family of symmetric tent maps, where
the slope is the parameter. Given two such tent maps $f_a$, $f_b$
with periodic critical points, we show that the inverse limit spaces
$({\mathbb I}_a,f_a)$ and $({\mathbb I}_b,g_b)$ are not homeomorphic when $a \neq b$.
To obtain our result, we define topological
substructures of a composant, called “wrapping points” and “gaps”,
and identify properties of these substructures preserved under a
homeomorphism.
Keywords:
work within one parameter family symmetric tent maps where slope parameter given tent maps periodic critical points inverse limit spaces mathbb mathbb homeomorphic neq obtain result define topological substructures composant called wrapping points gaps identify properties these substructures preserved under homeomorphism
Affiliations des auteurs :
Lois Kailhofer 1
@article{10_4064_fm177_2_1,
author = {Lois Kailhofer},
title = {A classification of inverse limit spaces of tent maps
with periodic critical points},
journal = {Fundamenta Mathematicae},
pages = {95--120},
publisher = {mathdoc},
volume = {177},
number = {2},
year = {2003},
doi = {10.4064/fm177-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-1/}
}
TY - JOUR AU - Lois Kailhofer TI - A classification of inverse limit spaces of tent maps with periodic critical points JO - Fundamenta Mathematicae PY - 2003 SP - 95 EP - 120 VL - 177 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm177-2-1/ DO - 10.4064/fm177-2-1 LA - en ID - 10_4064_fm177_2_1 ER -
Lois Kailhofer. A classification of inverse limit spaces of tent maps with periodic critical points. Fundamenta Mathematicae, Tome 177 (2003) no. 2, pp. 95-120. doi: 10.4064/fm177-2-1
Cité par Sources :