Une formule pour les extensions de foncteurs composés
Fundamenta Mathematicae, Tome 177 (2003) no. 1, pp. 55-82
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be a prime, and let
${\cal F}$ be the category of functors from
the finite $\Bbb F_p$-vector spaces to all $\Bbb F_p$-vector spaces. The object
$\rm Id$ of ${\cal F}$ is the inclusion functor. Let $F$ and $G$ be two
objects in ${\cal F}$. If $F$ and $G$ satisfy suitable conditions, the
main result of this paper allows one to compute
$\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G \circ F)$
from the knowledge of $\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},F)$ and
$\mathop{{\rm Ext}}_{\cal F}^*(\mathop{{\rm Id}},G)$.
Mots-clés :
prime cal category functors finite bbb p vector spaces bbb p vector spaces object cal inclusion functor objects cal satisfy suitable conditions main result paper allows compute mathop ext cal * mathop circ knowledge mathop ext cal * mathop mathop ext cal * mathop
Affiliations des auteurs :
Alain Troesch 1
@article{10_4064_fm177_1_4,
author = {Alain Troesch},
title = {Une formule pour les extensions de foncteurs compos\'es},
journal = {Fundamenta Mathematicae},
pages = {55--82},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2003},
doi = {10.4064/fm177-1-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm177-1-4/}
}
Alain Troesch. Une formule pour les extensions de foncteurs composés. Fundamenta Mathematicae, Tome 177 (2003) no. 1, pp. 55-82. doi: 10.4064/fm177-1-4
Cité par Sources :