Multiple solutions of indefinite elliptic systems
via a Galerkin-type Conley index theory
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 233-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mit\Omega}$ be a bounded domain in $\mathbb R^N$ with smooth boundary.
Consider the following elliptic system:
$$\eqalign{
-{\mit\Delta} u=\partial_vH(u,v,x)\quad\ \hbox{in ${\mit\Omega}$,}\cr
-{\mit\Delta} v=\partial_uH(u,v,x)\quad\ \hbox{in ${\mit\Omega}$,}\cr
u=0,\quad v=0\quad\ \hbox{in $\partial{\mit\Omega}$.}\cr}
\tag{ES}
$$
We assume that $H$ is an even “$-$”-type Hamiltonian function whose
first order partial derivatives satisfy appropriate growth conditions. We
show that if $(0,0)$ is a hyperbolic solution of~(ES), then (ES) has at
least $2|\mu|$ nontrivial solutions, where $\mu=\mu(0,0)$ is the
renormalized Morse index of $(0,0)$. This proves a conjecture by Angenent
and van der Vorst.
Keywords:
mit omega bounded domain mathbb smooth boundary consider following elliptic system eqalign mit delta partial quad hbox mit omega mit delta partial quad hbox mit omega quad quad hbox partial mit omega tag assume even type hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions hyperbolic solution has least nontrivial solutions where renormalized morse index proves conjecture angenent van der vorst
Affiliations des auteurs :
Marek Izydorek 1 ; Krzysztof P. Rybakowski 2
@article{10_4064_fm176_3_3,
author = {Marek Izydorek and Krzysztof P. Rybakowski},
title = {Multiple solutions of indefinite elliptic systems
via a {Galerkin-type} {Conley} index theory},
journal = {Fundamenta Mathematicae},
pages = {233--249},
publisher = {mathdoc},
volume = {176},
number = {3},
year = {2003},
doi = {10.4064/fm176-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/}
}
TY - JOUR AU - Marek Izydorek AU - Krzysztof P. Rybakowski TI - Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory JO - Fundamenta Mathematicae PY - 2003 SP - 233 EP - 249 VL - 176 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/ DO - 10.4064/fm176-3-3 LA - en ID - 10_4064_fm176_3_3 ER -
%0 Journal Article %A Marek Izydorek %A Krzysztof P. Rybakowski %T Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory %J Fundamenta Mathematicae %D 2003 %P 233-249 %V 176 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/ %R 10.4064/fm176-3-3 %G en %F 10_4064_fm176_3_3
Marek Izydorek; Krzysztof P. Rybakowski. Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 233-249. doi: 10.4064/fm176-3-3
Cité par Sources :