Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory
Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 233-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mit\Omega}$ be a bounded domain in $\mathbb R^N$ with smooth boundary. Consider the following elliptic system: $$\eqalign{ -{\mit\Delta} u=\partial_vH(u,v,x)\quad\ \hbox{in ${\mit\Omega}$,}\cr -{\mit\Delta} v=\partial_uH(u,v,x)\quad\ \hbox{in ${\mit\Omega}$,}\cr u=0,\quad v=0\quad\ \hbox{in $\partial{\mit\Omega}$.}\cr} \tag{ES} $$ We assume that $H$ is an even “$-$”-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if $(0,0)$ is a hyperbolic solution of~(ES), then (ES) has at least $2|\mu|$ nontrivial solutions, where $\mu=\mu(0,0)$ is the renormalized Morse index of $(0,0)$. This proves a conjecture by Angenent and van der Vorst.
DOI : 10.4064/fm176-3-3
Keywords: mit omega bounded domain mathbb smooth boundary consider following elliptic system eqalign mit delta partial quad hbox mit omega mit delta partial quad hbox mit omega quad quad hbox partial mit omega tag assume even type hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions hyperbolic solution has least nontrivial solutions where renormalized morse index proves conjecture angenent van der vorst

Marek Izydorek 1 ; Krzysztof P. Rybakowski 2

1 Department of Technical Physics and Applied Mathematics Gdańsk University of Technology Narutowicza 11/12 80-952 Gdańsk, Poland
2 Fachbereich Mathematik Universität Rostock Universitätsplatz 1 18055 Rostock, Germany
@article{10_4064_fm176_3_3,
     author = {Marek Izydorek and Krzysztof P. Rybakowski},
     title = {Multiple solutions of indefinite elliptic systems
  via a {Galerkin-type} {Conley} index theory},
     journal = {Fundamenta Mathematicae},
     pages = {233--249},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2003},
     doi = {10.4064/fm176-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/}
}
TY  - JOUR
AU  - Marek Izydorek
AU  - Krzysztof P. Rybakowski
TI  - Multiple solutions of indefinite elliptic systems
  via a Galerkin-type Conley index theory
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 233
EP  - 249
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/
DO  - 10.4064/fm176-3-3
LA  - en
ID  - 10_4064_fm176_3_3
ER  - 
%0 Journal Article
%A Marek Izydorek
%A Krzysztof P. Rybakowski
%T Multiple solutions of indefinite elliptic systems
  via a Galerkin-type Conley index theory
%J Fundamenta Mathematicae
%D 2003
%P 233-249
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/
%R 10.4064/fm176-3-3
%G en
%F 10_4064_fm176_3_3
Marek Izydorek; Krzysztof P. Rybakowski. Multiple solutions of indefinite elliptic systems
  via a Galerkin-type Conley index theory. Fundamenta Mathematicae, Tome 176 (2003) no. 3, pp. 233-249. doi : 10.4064/fm176-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm176-3-3/

Cité par Sources :