Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 143-155.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We formulate a Covering Property Axiom CPA$_{\rm cube}^{\rm game}$, which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong $\gamma $-sets in ${\mathbb R}$ (which are strongly meager) as well as uncountable $\gamma $-sets in ${\mathbb R}$ which are not strongly meager. These sets must be of cardinality $\omega _1{\mathfrak c}$, since every $\gamma $-set is universally null, while CPA$_{\rm cube}^{\rm game}$ implies that every universally null has cardinality less than ${\mathfrak c}=\omega _2$. We also show that CPA$_{\rm cube}^{\rm game}$ implies the existence of a partition of ${\mathbb R}$ into $\omega _1$ null compact sets.
DOI : 10.4064/fm176-2-3
Keywords: formulate covering property axiom cpa cube game which holds iterated perfect set model implies existence uncountable strong gamma sets mathbb which strongly meager uncountable gamma sets mathbb which strongly meager these sets cardinality omega mathfrak since every gamma set universally null while cpa cube game implies every universally null has cardinality mathfrak omega cpa cube game implies existence partition mathbb omega null compact sets

Krzysztof Ciesielski 1 ; Andrés Millán 1 ; Janusz Pawlikowski 2

1 Department of Mathematics West Virginia University Morgantown, WV 26506-6310, U.S.A.
2 Department of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_fm176_2_3,
     author = {Krzysztof Ciesielski and Andr\'es Mill\'an and Janusz Pawlikowski},
     title = {Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$},
     journal = {Fundamenta Mathematicae},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2003},
     doi = {10.4064/fm176-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/}
}
TY  - JOUR
AU  - Krzysztof Ciesielski
AU  - Andrés Millán
AU  - Janusz Pawlikowski
TI  - Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
JO  - Fundamenta Mathematicae
PY  - 2003
SP  - 143
EP  - 155
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/
DO  - 10.4064/fm176-2-3
LA  - en
ID  - 10_4064_fm176_2_3
ER  - 
%0 Journal Article
%A Krzysztof Ciesielski
%A Andrés Millán
%A Janusz Pawlikowski
%T Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
%J Fundamenta Mathematicae
%D 2003
%P 143-155
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/
%R 10.4064/fm176-2-3
%G en
%F 10_4064_fm176_2_3
Krzysztof Ciesielski; Andrés Millán; Janusz Pawlikowski. Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$. Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 143-155. doi : 10.4064/fm176-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/

Cité par Sources :