Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 143-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We formulate a Covering Property Axiom CPA$_{\rm cube}^{\rm game}$, which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong $\gamma $-sets in ${\mathbb R}$ (which are strongly meager) as well as uncountable $\gamma $-sets in ${\mathbb R}$ which are not strongly meager. These sets must be of cardinality $\omega _1{\mathfrak c}$, since every $\gamma $-set is universally null, while
CPA$_{\rm cube}^{\rm game}$ implies that every universally null has cardinality less than ${\mathfrak c}=\omega _2$. We also show that
CPA$_{\rm cube}^{\rm game}$ implies the existence of a partition of ${\mathbb R}$ into $\omega _1$ null compact sets.
Keywords:
formulate covering property axiom cpa cube game which holds iterated perfect set model implies existence uncountable strong gamma sets mathbb which strongly meager uncountable gamma sets mathbb which strongly meager these sets cardinality omega mathfrak since every gamma set universally null while cpa cube game implies every universally null has cardinality mathfrak omega cpa cube game implies existence partition mathbb omega null compact sets
Affiliations des auteurs :
Krzysztof Ciesielski 1 ; Andrés Millán 1 ; Janusz Pawlikowski 2
@article{10_4064_fm176_2_3,
author = {Krzysztof Ciesielski and Andr\'es Mill\'an and Janusz Pawlikowski},
title = {Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$},
journal = {Fundamenta Mathematicae},
pages = {143--155},
publisher = {mathdoc},
volume = {176},
number = {2},
year = {2003},
doi = {10.4064/fm176-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/}
}
TY - JOUR
AU - Krzysztof Ciesielski
AU - Andrés Millán
AU - Janusz Pawlikowski
TI - Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
JO - Fundamenta Mathematicae
PY - 2003
SP - 143
EP - 155
VL - 176
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/
DO - 10.4064/fm176-2-3
LA - en
ID - 10_4064_fm176_2_3
ER -
%0 Journal Article
%A Krzysztof Ciesielski
%A Andrés Millán
%A Janusz Pawlikowski
%T Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$
%J Fundamenta Mathematicae
%D 2003
%P 143-155
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm176-2-3/
%R 10.4064/fm176-2-3
%G en
%F 10_4064_fm176_2_3
Krzysztof Ciesielski; Andrés Millán; Janusz Pawlikowski. Uncountable $\gamma $-sets under axiom ${\rm CPA}_{\rm cube}^{\rm game}$. Fundamenta Mathematicae, Tome 176 (2003) no. 2, pp. 143-155. doi: 10.4064/fm176-2-3
Cité par Sources :