Shape index in metric spaces
Fundamenta Mathematicae, Tome 176 (2003) no. 1, pp. 47-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend the shape index, introduced by
Robbin and Salamon and Mrozek, to locally defined maps in metric
spaces. We show that this index is additive. Thus our
construction answers in the affirmative two questions posed by
Mrozek in [12]. We also
prove that the shape index cannot be arbitrarily complicated: the
shapes of $q$-adic solenoids appear as shape indices in natural
modifications of Smale's horseshoes but there is not any compact
isolated invariant set for any locally defined map in a locally compact
metric ANR whose shape index is the shape of a generalized solenoid.
We also show that, for maps defined in locally compact metric ANRs,
the shape index can always be computed in the Hilbert cube.
Consequently, the shape index is the shape of the inverse limit of a
sequence $\{P_n, g_n\}$ where $P_n=P$ is a fixed ANR and $g_n=g:
P \rightarrow P$ is a fixed bonding map.
Keywords:
extend shape index introduced robbin salamon mrozek locally defined maps metric spaces index additive construction answers affirmative questions posed mrozek prove shape index cannot arbitrarily complicated shapes q adic solenoids appear shape indices natural modifications smales horseshoes there compact isolated invariant set locally defined map locally compact metric anr whose shape index shape generalized solenoid maps defined locally compact metric anrs shape index always computed hilbert cube consequently shape index shape inverse limit sequence where fixed anr rightarrow fixed bonding map
Affiliations des auteurs :
Francisco R. Ruiz del Portal 1 ; José M. Salazar 2
@article{10_4064_fm176_1_4,
author = {Francisco R. Ruiz del Portal and Jos\'e M. Salazar},
title = {Shape index in metric spaces},
journal = {Fundamenta Mathematicae},
pages = {47--62},
publisher = {mathdoc},
volume = {176},
number = {1},
year = {2003},
doi = {10.4064/fm176-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm176-1-4/}
}
TY - JOUR AU - Francisco R. Ruiz del Portal AU - José M. Salazar TI - Shape index in metric spaces JO - Fundamenta Mathematicae PY - 2003 SP - 47 EP - 62 VL - 176 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm176-1-4/ DO - 10.4064/fm176-1-4 LA - en ID - 10_4064_fm176_1_4 ER -
Francisco R. Ruiz del Portal; José M. Salazar. Shape index in metric spaces. Fundamenta Mathematicae, Tome 176 (2003) no. 1, pp. 47-62. doi: 10.4064/fm176-1-4
Cité par Sources :