A note on singular homology groups of
infinite products of compacta
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 285-289
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $n$ be an integer with $n \geq 2$ and $\{X_{i}\}$ be
an infinite collection of $(n-1)$-connected continua. We compare the homotopy
groups of ${\mit\Sigma} (\prod _{i}X_{i})$ with those of
$\prod _{i}{\mit\Sigma} X_{i}$ (${\mit\Sigma}$ denotes the unreduced
suspension) via the Freudenthal Suspension Theorem. An application
to homology groups of the countable product of the $n( \geq 2)$-sphere is
given.
Keywords:
integer geq infinite collection n connected continua compare homotopy groups mit sigma prod those prod mit sigma mit sigma denotes unreduced suspension via freudenthal suspension theorem application homology groups countable product geq sphere given
Affiliations des auteurs :
Kazuhiro Kawamura  1
@article{10_4064_fm175_3_5,
author = {Kazuhiro Kawamura},
title = {A note on singular homology groups of
infinite products of compacta},
journal = {Fundamenta Mathematicae},
pages = {285--289},
year = {2002},
volume = {175},
number = {3},
doi = {10.4064/fm175-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-5/}
}
Kazuhiro Kawamura. A note on singular homology groups of infinite products of compacta. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 285-289. doi: 10.4064/fm175-3-5
Cité par Sources :