Zero-one laws for graphs with edge
probabilities decaying with distance. Part I
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 195-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G_n$ be the random graph on $[n]=\{1,\ldots,n\}$ with
the possible edge $\{i,j\}$ having probability $p_{|i-j|}=
1/|i-j|^\alpha$ for $j\ne i, i+1, i-1$ with $\alpha\in (0,1)$ irrational. We prove that the
zero-one law (for first order logic) holds..
Keywords:
random graph ldots possible edge having probability i j i j alpha i alpha irrational prove zero one law first order logic holds
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm175_3_1,
author = {Saharon Shelah},
title = {Zero-one laws for graphs with edge
probabilities decaying with distance. {Part} {I}},
journal = {Fundamenta Mathematicae},
pages = {195--239},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2002},
doi = {10.4064/fm175-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/}
}
TY - JOUR AU - Saharon Shelah TI - Zero-one laws for graphs with edge probabilities decaying with distance. Part I JO - Fundamenta Mathematicae PY - 2002 SP - 195 EP - 239 VL - 175 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/ DO - 10.4064/fm175-3-1 LA - en ID - 10_4064_fm175_3_1 ER -
Saharon Shelah. Zero-one laws for graphs with edge probabilities decaying with distance. Part I. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 195-239. doi: 10.4064/fm175-3-1
Cité par Sources :