Zero-one laws for graphs with edge probabilities decaying with distance. Part I
Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 195-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G_n$ be the random graph on $[n]=\{1,\ldots,n\}$ with the possible edge $\{i,j\}$ having probability $p_{|i-j|}= 1/|i-j|^\alpha$ for $j\ne i, i+1, i-1$ with $\alpha\in (0,1)$ irrational. We prove that the zero-one law (for first order logic) holds..
DOI : 10.4064/fm175-3-1
Keywords: random graph ldots possible edge having probability i j i j alpha i alpha irrational prove zero one law first order logic holds

Saharon Shelah 1

1 Institute of Mathematics The Hebrew University of Jerusalem 91904 Jerusalem, Israel
@article{10_4064_fm175_3_1,
     author = {Saharon Shelah},
     title = {Zero-one laws for graphs with edge
 probabilities decaying with distance. {Part} {I}},
     journal = {Fundamenta Mathematicae},
     pages = {195--239},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2002},
     doi = {10.4064/fm175-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/}
}
TY  - JOUR
AU  - Saharon Shelah
TI  - Zero-one laws for graphs with edge
 probabilities decaying with distance. Part I
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 195
EP  - 239
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/
DO  - 10.4064/fm175-3-1
LA  - en
ID  - 10_4064_fm175_3_1
ER  - 
%0 Journal Article
%A Saharon Shelah
%T Zero-one laws for graphs with edge
 probabilities decaying with distance. Part I
%J Fundamenta Mathematicae
%D 2002
%P 195-239
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/
%R 10.4064/fm175-3-1
%G en
%F 10_4064_fm175_3_1
Saharon Shelah. Zero-one laws for graphs with edge
 probabilities decaying with distance. Part I. Fundamenta Mathematicae, Tome 175 (2002) no. 3, pp. 195-239. doi : 10.4064/fm175-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm175-3-1/

Cité par Sources :