Unstable homotopy invariance for finite fields
Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 155-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $k$ is a finite field with $p^d$ elements, then the natural map $H_i({\rm GL}_n(k),{\mathbb Z})\to H_i({\rm GL}_n(k[t]),{\mathbb Z})$ is an isomorphism for $0\le i d(p-1)$ and for all $n$.
DOI : 10.4064/fm175-2-5
Keywords: prove finite field elements natural map mathbb mathbb isomorphism p

Kevin P. Knudson 1

1 Department of Mathematics and Statistics Mississippi State University P.O. Drawer MA Mississippi State, MS 39762, U.S.A.
@article{10_4064_fm175_2_5,
     author = {Kevin P. Knudson},
     title = {Unstable homotopy invariance for finite fields},
     journal = {Fundamenta Mathematicae},
     pages = {155--162},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2002},
     doi = {10.4064/fm175-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-5/}
}
TY  - JOUR
AU  - Kevin P. Knudson
TI  - Unstable homotopy invariance for finite fields
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 155
EP  - 162
VL  - 175
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-5/
DO  - 10.4064/fm175-2-5
LA  - en
ID  - 10_4064_fm175_2_5
ER  - 
%0 Journal Article
%A Kevin P. Knudson
%T Unstable homotopy invariance for finite fields
%J Fundamenta Mathematicae
%D 2002
%P 155-162
%V 175
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-5/
%R 10.4064/fm175-2-5
%G en
%F 10_4064_fm175_2_5
Kevin P. Knudson. Unstable homotopy invariance for finite fields. Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 155-162. doi : 10.4064/fm175-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-5/

Cité par Sources :