Unstable homotopy invariance for finite fields
Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 155-162
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $k$ is a finite field with $p^d$ elements, then the natural map $H_i({\rm GL}_n(k),{\mathbb Z})\to H_i({\rm GL}_n(k[t]),{\mathbb Z})$ is an
isomorphism for $0\le i d(p-1)$ and for all $n$.
Keywords:
prove finite field elements natural map mathbb mathbb isomorphism p
Affiliations des auteurs :
Kevin P. Knudson 1
@article{10_4064_fm175_2_5,
author = {Kevin P. Knudson},
title = {Unstable homotopy invariance for finite fields},
journal = {Fundamenta Mathematicae},
pages = {155--162},
publisher = {mathdoc},
volume = {175},
number = {2},
year = {2002},
doi = {10.4064/fm175-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-5/}
}
Kevin P. Knudson. Unstable homotopy invariance for finite fields. Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 155-162. doi: 10.4064/fm175-2-5
Cité par Sources :