Convex Corson compacta and Radon measures
Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 143-154
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assuming the continuum hypothesis, we show that
(i) there is a compact convex subset $L$ of ${\mit \Sigma }({{\mathbb R}}^{\omega _{1}})$, and a probability Radon measure on $L$ which has no separable support; (ii) there is a Corson compact space $K$, and a convex weak$^*$-compact set $M$ of Radon probability measures on $K$ which has no $G_{\delta }$-points.
Keywords:
assuming continuum hypothesis there compact convex subset mit sigma mathbb omega probability radon measure which has separable support there corson compact space convex weak * compact set radon probability measures which has delta points
Affiliations des auteurs :
Grzegorz Plebanek 1
@article{10_4064_fm175_2_4,
author = {Grzegorz Plebanek},
title = {Convex {Corson} compacta and {Radon} measures},
journal = {Fundamenta Mathematicae},
pages = {143--154},
publisher = {mathdoc},
volume = {175},
number = {2},
year = {2002},
doi = {10.4064/fm175-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-4/}
}
Grzegorz Plebanek. Convex Corson compacta and Radon measures. Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 143-154. doi: 10.4064/fm175-2-4
Cité par Sources :