Some combinatorics involving $\xi $-large sets
Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 119-125
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a version of the Ramsey theorem for partitions of (increasing) $n$-tuples. We derive this result from a version of König's infinity lemma for $\xi $-large trees. Here $\xi
\varepsilon _ 0$ and the notion of largeness is in the sense of Hardy hierarchy.
Keywords:
prove version ramsey theorem partitions increasing n tuples derive result version nigs infinity lemma large trees here varepsilon notion largeness sense hardy hierarchy
Affiliations des auteurs :
Teresa Bigorajska 1 ; Henryk Kotlarski 2
@article{10_4064_fm175_2_2,
author = {Teresa Bigorajska and Henryk Kotlarski},
title = {Some combinatorics involving $\xi $-large sets},
journal = {Fundamenta Mathematicae},
pages = {119--125},
publisher = {mathdoc},
volume = {175},
number = {2},
year = {2002},
doi = {10.4064/fm175-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-2/}
}
TY - JOUR AU - Teresa Bigorajska AU - Henryk Kotlarski TI - Some combinatorics involving $\xi $-large sets JO - Fundamenta Mathematicae PY - 2002 SP - 119 EP - 125 VL - 175 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm175-2-2/ DO - 10.4064/fm175-2-2 LA - en ID - 10_4064_fm175_2_2 ER -
Teresa Bigorajska; Henryk Kotlarski. Some combinatorics involving $\xi $-large sets. Fundamenta Mathematicae, Tome 175 (2002) no. 2, pp. 119-125. doi: 10.4064/fm175-2-2
Cité par Sources :