A fixed point conjecture for
Borsuk continuous set-valued mappings
Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 69-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result of this paper is that for $n = 3,4,5$ and $k=n-2$, every Borsuk continuous set-valued map of the closed ball in the $n$-dimensional Euclidean space with values which are one-point sets or sets homeomorphic to the $k$-sphere has a fixed point. Our approach fails for $(k,n) = (1,4)$. A relevant counterexample (for the homological method, not for the fixed point conjecture) is indicated.
Keywords:
main result paper n every borsuk continuous set valued map closed ball n dimensional euclidean space values which one point sets sets homeomorphic k sphere has fixed point approach fails relevant counterexample homological method fixed point conjecture indicated
Affiliations des auteurs :
Dariusz Miklaszewski 1
@article{10_4064_fm175_1_4,
author = {Dariusz Miklaszewski},
title = {A fixed point conjecture for
{Borsuk} continuous set-valued mappings},
journal = {Fundamenta Mathematicae},
pages = {69--78},
publisher = {mathdoc},
volume = {175},
number = {1},
year = {2002},
doi = {10.4064/fm175-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-4/}
}
TY - JOUR AU - Dariusz Miklaszewski TI - A fixed point conjecture for Borsuk continuous set-valued mappings JO - Fundamenta Mathematicae PY - 2002 SP - 69 EP - 78 VL - 175 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm175-1-4/ DO - 10.4064/fm175-1-4 LA - en ID - 10_4064_fm175_1_4 ER -
Dariusz Miklaszewski. A fixed point conjecture for Borsuk continuous set-valued mappings. Fundamenta Mathematicae, Tome 175 (2002) no. 1, pp. 69-78. doi: 10.4064/fm175-1-4
Cité par Sources :