Diffusion to infinity for periodic orbits
in meromorphic dynamics
Fundamenta Mathematicae, Tome 174 (2002) no. 3, pp. 263-269
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this “diffusion to infinity” occurs and prove certain conditions under which it does not.
Keywords:
small perturbation rational function causes only small perturbation its periodic orbits situation different transcendental maps namely orbits may escape infinity under small perturbations parameters examples where diffusion infinity occurs prove certain conditions under which does
Affiliations des auteurs :
Janina Kotus 1 ; Grzegorz Świątek 2
@article{10_4064_fm174_3_6,
author = {Janina Kotus and Grzegorz \'Swi\k{a}tek},
title = {Diffusion to infinity for periodic orbits
in meromorphic dynamics},
journal = {Fundamenta Mathematicae},
pages = {263--269},
publisher = {mathdoc},
volume = {174},
number = {3},
year = {2002},
doi = {10.4064/fm174-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm174-3-6/}
}
TY - JOUR AU - Janina Kotus AU - Grzegorz Świątek TI - Diffusion to infinity for periodic orbits in meromorphic dynamics JO - Fundamenta Mathematicae PY - 2002 SP - 263 EP - 269 VL - 174 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm174-3-6/ DO - 10.4064/fm174-3-6 LA - en ID - 10_4064_fm174_3_6 ER -
Janina Kotus; Grzegorz Świątek. Diffusion to infinity for periodic orbits in meromorphic dynamics. Fundamenta Mathematicae, Tome 174 (2002) no. 3, pp. 263-269. doi: 10.4064/fm174-3-6
Cité par Sources :