On typical parametrizations of finite-dimensional compacta
on the Cantor set
Fundamenta Mathematicae, Tome 174 (2002) no. 3, pp. 253-261
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if $X$ is a perfect finite-dimensional compactum, then for almost every continuous surjection of the Cantor set onto $X$, the set of points of maximal order is uncountable. Moreover, if $X$ is a perfect compactum of positive finite dimension then for a typical parametrization of $X$ on the Cantor set, the set of points of maximal order is homeomorphic to the product of the rationals and the Cantor set.
Keywords:
prove perfect finite dimensional compactum almost every continuous surjection cantor set set points maximal order uncountable moreover perfect compactum positive finite dimension typical parametrization cantor set set points maximal order homeomorphic product rationals cantor set
Affiliations des auteurs :
Paweł Milewski  1
@article{10_4064_fm174_3_5,
author = {Pawe{\l} Milewski},
title = {On typical parametrizations of finite-dimensional compacta
on the {Cantor} set},
journal = {Fundamenta Mathematicae},
pages = {253--261},
year = {2002},
volume = {174},
number = {3},
doi = {10.4064/fm174-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm174-3-5/}
}
TY - JOUR AU - Paweł Milewski TI - On typical parametrizations of finite-dimensional compacta on the Cantor set JO - Fundamenta Mathematicae PY - 2002 SP - 253 EP - 261 VL - 174 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm174-3-5/ DO - 10.4064/fm174-3-5 LA - en ID - 10_4064_fm174_3_5 ER -
Paweł Milewski. On typical parametrizations of finite-dimensional compacta on the Cantor set. Fundamenta Mathematicae, Tome 174 (2002) no. 3, pp. 253-261. doi: 10.4064/fm174-3-5
Cité par Sources :