For Coxeter groups $z^{|g|}$ is a coefficient of a uniformly bounded representation
Fundamenta Mathematicae, Tome 174 (2002) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the theorem in the title by constructing an action of a Coxeter group on a product of trees.
DOI : 10.4064/fm174-1-4
Keywords: prove theorem title constructing action coxeter group product trees

Tadeusz Januszkiewicz 1

1 Institute of Mathematics Wroc/law University Pl. Grunwaldzki 2//4 50-384 Wroc/law, Poland and Institute of Mathematics Polish Academy of Sciences Wroc/law Branch Kopernika 18 51-617 Wroc/law, Poland
@article{10_4064_fm174_1_4,
     author = {Tadeusz Januszkiewicz},
     title = {For {Coxeter} groups $z^{|g|}$ is a coefficient
of a uniformly bounded representation},
     journal = {Fundamenta Mathematicae},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {174},
     number = {1},
     year = {2002},
     doi = {10.4064/fm174-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-4/}
}
TY  - JOUR
AU  - Tadeusz Januszkiewicz
TI  - For Coxeter groups $z^{|g|}$ is a coefficient
of a uniformly bounded representation
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 79
EP  - 86
VL  - 174
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-4/
DO  - 10.4064/fm174-1-4
LA  - en
ID  - 10_4064_fm174_1_4
ER  - 
%0 Journal Article
%A Tadeusz Januszkiewicz
%T For Coxeter groups $z^{|g|}$ is a coefficient
of a uniformly bounded representation
%J Fundamenta Mathematicae
%D 2002
%P 79-86
%V 174
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-4/
%R 10.4064/fm174-1-4
%G en
%F 10_4064_fm174_1_4
Tadeusz Januszkiewicz. For Coxeter groups $z^{|g|}$ is a coefficient
of a uniformly bounded representation. Fundamenta Mathematicae, Tome 174 (2002) no. 1, pp. 79-86. doi : 10.4064/fm174-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-4/

Cité par Sources :