On equivalence relations second order definable over $H(\kappa)$
Fundamenta Mathematicae, Tome 174 (2002) no. 1, pp. 1-21
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\kappa$ be an uncountable regular cardinal. Call an equivalence
relation on functions from $\kappa$ into $2$ second order definable
over $H(\kappa)$ if there exists a second order sentence $\phi$ and a
parameter $P \subseteq H(\kappa)$ such that functions $f$ and $g$ from
$\kappa$ into $2$ are equivalent iff the structure $\langle
H(\kappa), \in, P, f, g \rangle$ satisfies $\phi$.
The possible numbers of equivalence classes of second order definable
equivalence relations include all the nonzero cardinals at most
$\kappa^+$. Additionally, the possibilities are closed under unions
and products of at most $\kappa$ cardinals.
We prove that these are the only restrictions: Assuming that
${\rm{GCH}}$ holds and $\lambda$ is a cardinal with
$\lambda^\kappa = \lambda$, there exists a generic extension
where all the cardinals are preserved, there are no new subsets of
cardinality $ \kappa$, $2^\kappa = \lambda$, and
for all cardinals $\mu$, the number of equivalence classes of some
second order definable equivalence relation on functions from $\kappa$
into $2$ is $\mu$ iff $\mu$ is in ${\mit\Omega}$,
where ${\mit\Omega}$ is any prearranged subset of $\lambda$ such that
$0 \not\in {\mit\Omega}$, ${\mit\Omega}$ contains all the nonzero cardinals $\leq
\kappa^+$, and
${\mit\Omega}$ is closed under unions and products of at most $\kappa$
cardinals.
Keywords:
kappa uncountable regular cardinal call equivalence relation functions kappa second order definable kappa there exists second order sentence phi parameter subseteq kappa functions kappa equivalent structure langle kappa rangle satisfies phi possible numbers equivalence classes second order definable equivalence relations include nonzero cardinals kappa additionally possibilities closed under unions products kappa cardinals prove these only restrictions assuming gch holds lambda cardinal lambda kappa lambda there exists generic extension where cardinals preserved there subsets cardinality kappa kappa lambda cardinals number equivalence classes second order definable equivalence relation functions kappa mit omega where mit omega prearranged subset lambda mit omega mit omega contains nonzero cardinals leq kappa mit omega closed under unions products kappa cardinals
Affiliations des auteurs :
Saharon Shelah 1 ; Pauli Vaisanen 2
@article{10_4064_fm174_1_1,
author = {Saharon Shelah and Pauli Vaisanen},
title = {On equivalence relations second order definable over $H(\kappa)$},
journal = {Fundamenta Mathematicae},
pages = {1--21},
publisher = {mathdoc},
volume = {174},
number = {1},
year = {2002},
doi = {10.4064/fm174-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-1/}
}
TY - JOUR AU - Saharon Shelah AU - Pauli Vaisanen TI - On equivalence relations second order definable over $H(\kappa)$ JO - Fundamenta Mathematicae PY - 2002 SP - 1 EP - 21 VL - 174 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm174-1-1/ DO - 10.4064/fm174-1-1 LA - en ID - 10_4064_fm174_1_1 ER -
Saharon Shelah; Pauli Vaisanen. On equivalence relations second order definable over $H(\kappa)$. Fundamenta Mathematicae, Tome 174 (2002) no. 1, pp. 1-21. doi: 10.4064/fm174-1-1
Cité par Sources :