Finiteness and choice
Fundamenta Mathematicae, Tome 173 (2002) no. 1, pp. 57-76.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with weak choice principles of the form: Every “finite” family of non-empty sets has a choice function, where “finite” stands for one of several different definitions of finiteness that are not equivalent unless we assume the axiom of choice (AC). Several relations of implication and independence are established. In the process, we answer a few open questions about the relations between different definitions of finiteness.
DOI : 10.4064/fm173-1-4
Keywords: weak choice principles form every finite family non empty sets has choice function where finite stands several different definitions finiteness equivalent unless assume axiom choice several relations implication independence established process answer few questions about relations between different definitions finiteness

Omar De la Cruz 1

1 Department of Mathematics Purdue University West Lafayette, IN 47907-1395, U.S.A.
@article{10_4064_fm173_1_4,
     author = {Omar De la Cruz},
     title = {Finiteness and choice},
     journal = {Fundamenta Mathematicae},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2002},
     doi = {10.4064/fm173-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm173-1-4/}
}
TY  - JOUR
AU  - Omar De la Cruz
TI  - Finiteness and choice
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 57
EP  - 76
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm173-1-4/
DO  - 10.4064/fm173-1-4
LA  - en
ID  - 10_4064_fm173_1_4
ER  - 
%0 Journal Article
%A Omar De la Cruz
%T Finiteness and choice
%J Fundamenta Mathematicae
%D 2002
%P 57-76
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm173-1-4/
%R 10.4064/fm173-1-4
%G en
%F 10_4064_fm173_1_4
Omar De la Cruz. Finiteness and choice. Fundamenta Mathematicae, Tome 173 (2002) no. 1, pp. 57-76. doi : 10.4064/fm173-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm173-1-4/

Cité par Sources :