A parabolic Pommerenke–Levin–Yoccoz inequality
Fundamenta Mathematicae, Tome 172 (2002) no. 3, pp. 249-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In a recent preprint [B], Bergweiler relates the number of critical points contained in the immediate basin of a multiple fixed point $\beta $ of a rational map $f: {\mathbb P}^1\to {\mathbb P}^1$, the number ${N}$ of attracting petals and the residue $\iota (f,\beta )$ of the 1-form $dz/(z-f(z))$ at $\beta $. In this article, we present a different approach to the same problem, which we were developing independently at the same time. We apply our method to answer a question raised by Bergweiler. In particular, we prove that when there are only ${N}$ grand orbit equivalence classes of critical points in the immediate basin, then $$ \Re ((N+1)/{2}-\iota (f,\beta )) > N/{\pi ^2}.$$
DOI : 10.4064/fm172-3-3
Keywords: recent preprint bergweiler relates number critical points contained immediate basin multiple fixed point beta rational map mathbb mathbb number attracting petals residue iota beta form z f beta article present different approach problem which developing independently time apply method answer question raised bergweiler particular prove there only grand orbit equivalence classes critical points immediate basin iota beta

Xavier Buff 1 ; Adam L. Epstein 2

1 Laboratoire Émile Picard Université Paul Sabatier 31062 Toulouse Cedex, France
2 Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom
@article{10_4064_fm172_3_3,
     author = {Xavier Buff and Adam L. Epstein},
     title = {A parabolic {Pommerenke{\textendash}Levin{\textendash}Yoccoz} inequality},
     journal = {Fundamenta Mathematicae},
     pages = {249--289},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2002},
     doi = {10.4064/fm172-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm172-3-3/}
}
TY  - JOUR
AU  - Xavier Buff
AU  - Adam L. Epstein
TI  - A parabolic Pommerenke–Levin–Yoccoz inequality
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 249
EP  - 289
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm172-3-3/
DO  - 10.4064/fm172-3-3
LA  - en
ID  - 10_4064_fm172_3_3
ER  - 
%0 Journal Article
%A Xavier Buff
%A Adam L. Epstein
%T A parabolic Pommerenke–Levin–Yoccoz inequality
%J Fundamenta Mathematicae
%D 2002
%P 249-289
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm172-3-3/
%R 10.4064/fm172-3-3
%G en
%F 10_4064_fm172_3_3
Xavier Buff; Adam L. Epstein. A parabolic Pommerenke–Levin–Yoccoz inequality. Fundamenta Mathematicae, Tome 172 (2002) no. 3, pp. 249-289. doi : 10.4064/fm172-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm172-3-3/

Cité par Sources :