A method for evaluating the fractal dimension in the plane, using coverings with crosses
Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 181-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Various methods may be used to define the Minkowski–Bouligand dimension of a compact subset $E$ in the plane. The best known is the box method. After introducing the notion of $\varepsilon $-connected set $E_{\varepsilon }$, we consider a new method based upon coverings of $E_{\varepsilon }$ with crosses of diameter $2{\varepsilon }$. To prove that this cross method gives the fractal dimension for all $E$, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals, which generalizes the well known variation method for graphs of continuous functions.
DOI : 10.4064/fm172-2-5
Keywords: various methods may define minkowski bouligand dimension compact subset plane best known box method after introducing notion varepsilon connected set varepsilon consider method based coverings varepsilon crosses diameter varepsilon prove cross method gives fractal dimension main argument consists constructing special pavement complementary set squares method gives rise dimension formula using integrals which generalizes known variation method graphs continuous functions

Claude Tricot 1

1 Laboratoire de Mathématiques Pures Université Blaise Pascal 63177 Aubière Cedex, France
@article{10_4064_fm172_2_5,
     author = {Claude Tricot},
     title = {A method for evaluating the fractal dimension in the plane, using coverings with crosses},
     journal = {Fundamenta Mathematicae},
     pages = {181--199},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2002},
     doi = {10.4064/fm172-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/}
}
TY  - JOUR
AU  - Claude Tricot
TI  - A method for evaluating the fractal dimension in the plane, using coverings with crosses
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 181
EP  - 199
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/
DO  - 10.4064/fm172-2-5
LA  - en
ID  - 10_4064_fm172_2_5
ER  - 
%0 Journal Article
%A Claude Tricot
%T A method for evaluating the fractal dimension in the plane, using coverings with crosses
%J Fundamenta Mathematicae
%D 2002
%P 181-199
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/
%R 10.4064/fm172-2-5
%G en
%F 10_4064_fm172_2_5
Claude Tricot. A method for evaluating the fractal dimension in the plane, using coverings with crosses. Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 181-199. doi : 10.4064/fm172-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/

Cité par Sources :