A method for evaluating the fractal dimension in the plane, using coverings with crosses
Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 181-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Various methods may be used to define the Minkowski–Bouligand dimension of a compact subset $E$ in the plane. The best known is the
box method. After introducing the notion of $\varepsilon $-connected set $E_{\varepsilon }$, we consider a new method based upon coverings of $E_{\varepsilon }$ with crosses of diameter $2{\varepsilon }$. To prove that this
cross method gives the fractal dimension for all $E$, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals, which generalizes the well known
variation method for graphs of continuous functions.
Keywords:
various methods may define minkowski bouligand dimension compact subset plane best known box method after introducing notion varepsilon connected set varepsilon consider method based coverings varepsilon crosses diameter varepsilon prove cross method gives fractal dimension main argument consists constructing special pavement complementary set squares method gives rise dimension formula using integrals which generalizes known variation method graphs continuous functions
Affiliations des auteurs :
Claude Tricot 1
@article{10_4064_fm172_2_5,
author = {Claude Tricot},
title = {A method for evaluating the fractal dimension in the plane, using coverings with crosses},
journal = {Fundamenta Mathematicae},
pages = {181--199},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2002},
doi = {10.4064/fm172-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/}
}
TY - JOUR AU - Claude Tricot TI - A method for evaluating the fractal dimension in the plane, using coverings with crosses JO - Fundamenta Mathematicae PY - 2002 SP - 181 EP - 199 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/ DO - 10.4064/fm172-2-5 LA - en ID - 10_4064_fm172_2_5 ER -
%0 Journal Article %A Claude Tricot %T A method for evaluating the fractal dimension in the plane, using coverings with crosses %J Fundamenta Mathematicae %D 2002 %P 181-199 %V 172 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-5/ %R 10.4064/fm172-2-5 %G en %F 10_4064_fm172_2_5
Claude Tricot. A method for evaluating the fractal dimension in the plane, using coverings with crosses. Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 181-199. doi: 10.4064/fm172-2-5
Cité par Sources :