A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces
Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 117-152
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
When the set of closed subspaces of $C({\mit \Delta })$, where ${\mit \Delta }$ is the Cantor set, is equipped with the standard Effros–Borel structure, the graph of the basic relations between Banach spaces (isomorphism, being isomorphic to a subspace, quotient, direct sum, …) is analytic non-Borel. Many natural families of Banach spaces (such as reflexive spaces, spaces not containing $\ell _1(\omega ),\dots$) are coanalytic non-Borel. Some natural ranks (rank of embedding, Szlenk indices) are shown to be coanalytic ranks. Applications are given to universality questions. Analogous results are shown for basic sequences modulo equivalence.
Keywords:
set closed subspaces mit delta where mit delta cantor set equipped standard effros borel structure graph basic relations between banach spaces isomorphism being isomorphic subspace quotient direct sum hellip analytic non borel many natural families banach spaces reflexive spaces spaces containing ell omega dots coanalytic non borel natural ranks rank embedding szlenk indices shown coanalytic ranks applications given universality questions analogous results shown basic sequences modulo equivalence
Affiliations des auteurs :
Benoit Bossard 1
@article{10_4064_fm172_2_3,
author = {Benoit Bossard},
title = {A coding of separable {Banach} spaces. {Analytic} and coanalytic families of {Banach} spaces},
journal = {Fundamenta Mathematicae},
pages = {117--152},
year = {2002},
volume = {172},
number = {2},
doi = {10.4064/fm172-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-3/}
}
TY - JOUR AU - Benoit Bossard TI - A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces JO - Fundamenta Mathematicae PY - 2002 SP - 117 EP - 152 VL - 172 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-3/ DO - 10.4064/fm172-2-3 LA - en ID - 10_4064_fm172_2_3 ER -
Benoit Bossard. A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 117-152. doi: 10.4064/fm172-2-3
Cité par Sources :