Maps into the torus and
minimal coincidence sets for homotopies
Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 99-106
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X,Y$ be manifolds of the same dimension. Given continuous mappings $f_i,g_i :X\to Y$, $i=0,1$, we consider the $1$-parameter coincidence problem of finding homotopies $f_t,g_t$, $0\leq t\leq 1$, such that the number of coincidence points for the pair $f_t,g_t$ is independent of $t$. When $Y$ is the torus and $f_0,g_0$ are coincidence free we produce coincidence free pairs $f_1,g_1$ such that no homotopy joining them is coincidence free at each level. When $X$ is also the torus we characterize the solution of the problem in terms of the Lefschetz coincidence number.
Keywords:
manifolds dimension given continuous mappings i consider parameter coincidence problem finding homotopies t leq leq number coincidence points pair t independent torus coincidence produce coincidence pairs homotopy joining coincidence each level torus characterize solution problem terms lefschetz coincidence number
Affiliations des auteurs :
D. L. Goncalves 1 ; M. R. Kelly 2
@article{10_4064_fm172_2_1,
author = {D. L. Goncalves and M. R. Kelly},
title = {Maps into the torus and
minimal coincidence sets for homotopies},
journal = {Fundamenta Mathematicae},
pages = {99--106},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2002},
doi = {10.4064/fm172-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-1/}
}
TY - JOUR AU - D. L. Goncalves AU - M. R. Kelly TI - Maps into the torus and minimal coincidence sets for homotopies JO - Fundamenta Mathematicae PY - 2002 SP - 99 EP - 106 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm172-2-1/ DO - 10.4064/fm172-2-1 LA - en ID - 10_4064_fm172_2_1 ER -
D. L. Goncalves; M. R. Kelly. Maps into the torus and minimal coincidence sets for homotopies. Fundamenta Mathematicae, Tome 172 (2002) no. 2, pp. 99-106. doi: 10.4064/fm172-2-1
Cité par Sources :