Homeomorphisms of composants of Knaster continua
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 267-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Knaster continuum $K_p$ is defined as the inverse limit of the $p$th degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer $p \ge 2$, all composants of $K_p$ having no endpoints are homeomorphic. This generalizes Bandt's result which concerns the case $p=2$.
Keywords:
knaster continuum defined inverse limit pth degree tent map every composant knaster continuum introduce order consider special points composant these describe structure composants prove integer composants having endpoints homeomorphic generalizes bandts result which concerns
Affiliations des auteurs :
Sonja Štimac 1
@article{10_4064_fm171_3_6,
author = {Sonja \v{S}timac},
title = {Homeomorphisms of composants of {Knaster} continua},
journal = {Fundamenta Mathematicae},
pages = {267--278},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2002},
doi = {10.4064/fm171-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-6/}
}
Sonja Štimac. Homeomorphisms of composants of Knaster continua. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 267-278. doi: 10.4064/fm171-3-6
Cité par Sources :