The covering number for category
and partition relations on $P_{\omega} (\lambda )$
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 235-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that $\mathop {\rm cov} (M)$ is the least infinite cardinal $\lambda $ such that $P_\omega (\lambda )$ (the set of all finite subsets of $\lambda $) fails to satisfy a certain natural generalization of Ramsey's Theorem.
Keywords:
mathop cov least infinite cardinal lambda omega lambda set finite subsets lambda fails satisfy certain natural generalization ramseys theorem
Affiliations des auteurs :
Pierre Matet 1
@article{10_4064_fm171_3_4,
author = {Pierre Matet},
title = {The covering number for category
and partition relations on $P_{\omega} (\lambda )$},
journal = {Fundamenta Mathematicae},
pages = {235--247},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2002},
doi = {10.4064/fm171-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/}
}
TY - JOUR
AU - Pierre Matet
TI - The covering number for category
and partition relations on $P_{\omega} (\lambda )$
JO - Fundamenta Mathematicae
PY - 2002
SP - 235
EP - 247
VL - 171
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/
DO - 10.4064/fm171-3-4
LA - en
ID - 10_4064_fm171_3_4
ER -
Pierre Matet. The covering number for category
and partition relations on $P_{\omega} (\lambda )$. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 235-247. doi: 10.4064/fm171-3-4
Cité par Sources :