The covering number for category and partition relations on $P_{\omega} (\lambda )$
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 235-247.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that $\mathop {\rm cov} (M)$ is the least infinite cardinal $\lambda $ such that $P_\omega (\lambda )$ (the set of all finite subsets of $\lambda $) fails to satisfy a certain natural generalization of Ramsey's Theorem.
DOI : 10.4064/fm171-3-4
Keywords: mathop cov least infinite cardinal lambda omega lambda set finite subsets lambda fails satisfy certain natural generalization ramseys theorem

Pierre Matet 1

1 Université de Caen–CNRS ESA 6081 Laboratoire SDAD Campus II 14032 Caen Cedex, France
@article{10_4064_fm171_3_4,
     author = {Pierre Matet},
     title = {The covering number for category
 and partition relations on $P_{\omega} (\lambda )$},
     journal = {Fundamenta Mathematicae},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2002},
     doi = {10.4064/fm171-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/}
}
TY  - JOUR
AU  - Pierre Matet
TI  - The covering number for category
 and partition relations on $P_{\omega} (\lambda )$
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 235
EP  - 247
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/
DO  - 10.4064/fm171-3-4
LA  - en
ID  - 10_4064_fm171_3_4
ER  - 
%0 Journal Article
%A Pierre Matet
%T The covering number for category
 and partition relations on $P_{\omega} (\lambda )$
%J Fundamenta Mathematicae
%D 2002
%P 235-247
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/
%R 10.4064/fm171-3-4
%G en
%F 10_4064_fm171_3_4
Pierre Matet. The covering number for category
 and partition relations on $P_{\omega} (\lambda )$. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 235-247. doi : 10.4064/fm171-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-4/

Cité par Sources :