On Eberlein compactifications of metrizable spaces
Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 223-234.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
DOI : 10.4064/fm171-3-3
Keywords: prove every finite dimensional metrizable space there exists compactification eberlein compact preserves covering dimension weight

Takashi Kimura 1 ; Kazuhiko Morishita 2

1 Department of Mathematics Faculty of Education Saitama University Urawa, Saitama 338-8570, Japan
2 Ashikaga Institute of Technology Ohmae 268-1 Ashikaga, Tochigi 326-8558, Japan
@article{10_4064_fm171_3_3,
     author = {Takashi Kimura and Kazuhiko Morishita},
     title = {On {Eberlein} compactifications of metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {223--234},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2002},
     doi = {10.4064/fm171-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-3/}
}
TY  - JOUR
AU  - Takashi Kimura
AU  - Kazuhiko Morishita
TI  - On Eberlein compactifications of metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 2002
SP  - 223
EP  - 234
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-3/
DO  - 10.4064/fm171-3-3
LA  - en
ID  - 10_4064_fm171_3_3
ER  - 
%0 Journal Article
%A Takashi Kimura
%A Kazuhiko Morishita
%T On Eberlein compactifications of metrizable spaces
%J Fundamenta Mathematicae
%D 2002
%P 223-234
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-3/
%R 10.4064/fm171-3-3
%G en
%F 10_4064_fm171_3_3
Takashi Kimura; Kazuhiko Morishita. On Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 171 (2002) no. 3, pp. 223-234. doi : 10.4064/fm171-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm171-3-3/

Cité par Sources :