On the Conley index in Hilbert spaces
in the absence of uniqueness
Fundamenta Mathematicae, Tome 171 (2002) no. 1, pp. 31-52
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider the ordinary differential equation $$\dot x=Lx+K(x)\tag 1 $$ on an infinite-dimensional Hilbert space $E$, where $L$ is a bounded linear operator on $E$ which is assumed to be
strongly indefinite and $K : E\to E$ is a completely continuous but
not necessarily locally Lipschitzian map. Given any isolating neighborhood $N$ relative to equation (1) we define a Conley-type index of $N$. This index is based on Galerkin approximation of equation (1) by finite-dimensional ODEs and extends to the non-Lipschitzian case the ${\cal L}{\cal S}$-Conley index theory introduced in [9]. This extended ${\cal L}{\cal S}$-Conley index allows applications to strongly indefinite variational problems $\nabla {\mit \Phi }(x)=0$ where ${\mit \Phi } : E\to {\mathbb R}$ is merely a $C^1$-function.
Keywords:
consider ordinary differential equation dot tag infinite dimensional hilbert space where bounded linear operator which assumed strongly indefinite completely continuous necessarily locally lipschitzian map given isolating neighborhood relative equation define conley type index index based galerkin approximation equation finite dimensional odes extends non lipschitzian cal cal conley index theory introduced extended cal cal conley index allows applications strongly indefinite variational problems nabla mit phi where mit phi mathbb merely function
Affiliations des auteurs :
Marek Izydorek 1 ; Krzysztof P. Rybakowski 2
@article{10_4064_fm171_1_2,
author = {Marek Izydorek and Krzysztof P. Rybakowski},
title = {On the {Conley} index in {Hilbert} spaces
in the absence of uniqueness},
journal = {Fundamenta Mathematicae},
pages = {31--52},
year = {2002},
volume = {171},
number = {1},
doi = {10.4064/fm171-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm171-1-2/}
}
TY - JOUR AU - Marek Izydorek AU - Krzysztof P. Rybakowski TI - On the Conley index in Hilbert spaces in the absence of uniqueness JO - Fundamenta Mathematicae PY - 2002 SP - 31 EP - 52 VL - 171 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm171-1-2/ DO - 10.4064/fm171-1-2 LA - en ID - 10_4064_fm171_1_2 ER -
Marek Izydorek; Krzysztof P. Rybakowski. On the Conley index in Hilbert spaces in the absence of uniqueness. Fundamenta Mathematicae, Tome 171 (2002) no. 1, pp. 31-52. doi: 10.4064/fm171-1-2
Cité par Sources :