Ordered group invariants for one-dimensional spaces
Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 267-286
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the Bruschlinsky group with the winding order
is a homomorphism
invariant for a class of one-dimensional inverse limit spaces.
In particular we show that if a presentation of an inverse limit
space satisfies the Simplicity Condition, then the Bruschlinsky
group with the winding order of the inverse limit space is a
dimension group and is a quotient of the dimension group with
the standard order of the adjacency matrices associated with the
presentation.
Keywords:
bruschlinsky group winding order homomorphism invariant class one dimensional inverse limit spaces particular presentation inverse limit space satisfies simplicity condition bruschlinsky group winding order inverse limit space dimension group quotient dimension group standard order adjacency matrices associated presentation
Affiliations des auteurs :
Inhyeop Yi 1
@article{10_4064_fm170_3_5,
author = {Inhyeop Yi},
title = {Ordered group invariants for one-dimensional spaces},
journal = {Fundamenta Mathematicae},
pages = {267--286},
publisher = {mathdoc},
volume = {170},
number = {3},
year = {2001},
doi = {10.4064/fm170-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-3-5/}
}
Inhyeop Yi. Ordered group invariants for one-dimensional spaces. Fundamenta Mathematicae, Tome 170 (2001) no. 3, pp. 267-286. doi: 10.4064/fm170-3-5
Cité par Sources :