A Ramsey-style extension of a theorem of Erdős and Hajnal
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 119-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $n$, $t$ are natural numbers, $\mu $ is an infinite cardinal, $G$ is an $n$-chromatic graph of cardinality at most $\mu $, then there is a graph $X$ with $X\to (G)^1_\mu $, $|X|=\mu ^+$, such that every subgraph of $X$ of cardinality $ t$ is $n$-colorable.
DOI : 10.4064/fm170-1-7
Keywords: natural numbers infinite cardinal n chromatic graph cardinality there graph every subgraph cardinality n colorable

Peter Komjáth 1

1 Department of Computer Science Eötvös University Kecskeméti u. 10–12 1053 Budapest, Hungary
@article{10_4064_fm170_1_7,
     author = {Peter Komj\'ath},
     title = {A {Ramsey-style} extension of a theorem
of {Erd\H{o}s} and {Hajnal}},
     journal = {Fundamenta Mathematicae},
     pages = {119--122},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2001},
     doi = {10.4064/fm170-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-7/}
}
TY  - JOUR
AU  - Peter Komjáth
TI  - A Ramsey-style extension of a theorem
of Erdős and Hajnal
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 119
EP  - 122
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-7/
DO  - 10.4064/fm170-1-7
LA  - en
ID  - 10_4064_fm170_1_7
ER  - 
%0 Journal Article
%A Peter Komjáth
%T A Ramsey-style extension of a theorem
of Erdős and Hajnal
%J Fundamenta Mathematicae
%D 2001
%P 119-122
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-7/
%R 10.4064/fm170-1-7
%G en
%F 10_4064_fm170_1_7
Peter Komjáth. A Ramsey-style extension of a theorem
of Erdős and Hajnal. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 119-122. doi : 10.4064/fm170-1-7. http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-7/

Cité par Sources :