A Ramsey-style extension of a theorem
of Erdős and Hajnal
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 119-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If $n$, $t$ are natural numbers, $\mu $ is an infinite
cardinal, $G$ is an $n$-chromatic graph of cardinality at most
$\mu $, then there is a graph $X$ with $X\to (G)^1_\mu $,
$|X|=\mu ^+$, such that every subgraph of $X$ of cardinality
$ t$ is $n$-colorable.
Keywords:
natural numbers infinite cardinal n chromatic graph cardinality there graph every subgraph cardinality n colorable
Affiliations des auteurs :
Peter Komjáth 1
@article{10_4064_fm170_1_7,
author = {Peter Komj\'ath},
title = {A {Ramsey-style} extension of a theorem
of {Erd\H{o}s} and {Hajnal}},
journal = {Fundamenta Mathematicae},
pages = {119--122},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2001},
doi = {10.4064/fm170-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-7/}
}
Peter Komjáth. A Ramsey-style extension of a theorem of Erdős and Hajnal. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 119-122. doi: 10.4064/fm170-1-7
Cité par Sources :