Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 165-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We continue the work of [2] and prove that for $\lambda $
successor, a $\lambda $-categorical theory ${\bf T}$ in
$L_{\kappa ^*,\omega }$ is $\mu $-categorical for every $\mu
\leq \lambda $ which is above the $(2^{{\rm LS}({\bf
T})})^+$-beth cardinal.
Keywords:
continue work prove lambda successor lambda categorical theory kappa * omega categorical every leq lambda which above beth cardinal
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm170_1_10,
author = {Saharon Shelah},
title = {Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. {Part} 2},
journal = {Fundamenta Mathematicae},
pages = {165--196},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2001},
doi = {10.4064/fm170-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/}
}
TY - JOUR
AU - Saharon Shelah
TI - Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2
JO - Fundamenta Mathematicae
PY - 2001
SP - 165
EP - 196
VL - 170
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/
DO - 10.4064/fm170-1-10
LA - en
ID - 10_4064_fm170_1_10
ER -
%0 Journal Article
%A Saharon Shelah
%T Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2
%J Fundamenta Mathematicae
%D 2001
%P 165-196
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/
%R 10.4064/fm170-1-10
%G en
%F 10_4064_fm170_1_10
Saharon Shelah. Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 165-196. doi: 10.4064/fm170-1-10
Cité par Sources :