Categoricity of theories in $L_{\kappa ^*, \omega }$, when $\kappa ^*$ is a measurable cardinal. Part 2
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 165-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue the work of [2] and prove that for $\lambda $ successor, a $\lambda $-categorical theory ${\bf T}$ in $L_{\kappa ^*,\omega }$ is $\mu $-categorical for every $\mu \leq \lambda $ which is above the $(2^{{\rm LS}({\bf T})})^+$-beth cardinal.
DOI : 10.4064/fm170-1-10
Keywords: continue work prove lambda successor lambda categorical theory kappa * omega categorical every leq lambda which above beth cardinal

Saharon Shelah 1

1 Institute of Mathematics The Hebrew University of Jerusalem 91904 Jerusalem, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, U.S.A.
@article{10_4064_fm170_1_10,
     author = {Saharon Shelah},
     title = {Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. {Part} 2},
     journal = {Fundamenta Mathematicae},
     pages = {165--196},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2001},
     doi = {10.4064/fm170-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/}
}
TY  - JOUR
AU  - Saharon Shelah
TI  - Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 165
EP  - 196
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/
DO  - 10.4064/fm170-1-10
LA  - en
ID  - 10_4064_fm170_1_10
ER  - 
%0 Journal Article
%A Saharon Shelah
%T Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2
%J Fundamenta Mathematicae
%D 2001
%P 165-196
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/
%R 10.4064/fm170-1-10
%G en
%F 10_4064_fm170_1_10
Saharon Shelah. Categoricity of theories in $L_{\kappa ^*, \omega }$, when
$\kappa ^*$ is a measurable cardinal. Part 2. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 165-196. doi : 10.4064/fm170-1-10. http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-10/

Cité par Sources :