Constructing $\omega $-stable structures: Computing rank
Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 1-20
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This is a sequel to [1]. Here we give careful attention to
the difficulties of calculating Morley and $U$-rank of the
infinite rank $\omega $-stable theories constructed by variants
of Hrushovski's methods. Sample result: For every $k \omega $,
there is an $\omega $-stable expansion of any algebraically
closed field which has Morley rank $\omega \times k$. We include
a corrected proof of the lemma in [1] establishing that the
generic model is $\omega $-saturated in the rank 2
case.
Keywords:
sequel here careful attention difficulties calculating morley u rank infinite rank omega stable theories constructed variants hrushovskis methods sample result every omega there omega stable expansion algebraically closed field which has morley rank omega times include corrected proof lemma establishing generic model omega saturated rank
Affiliations des auteurs :
John T. Baldwin 1 ; Kitty Holland 2
@article{10_4064_fm170_1_1,
author = {John T. Baldwin and Kitty Holland},
title = {Constructing $\omega $-stable structures: {Computing} rank},
journal = {Fundamenta Mathematicae},
pages = {1--20},
year = {2001},
volume = {170},
number = {1},
doi = {10.4064/fm170-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-1/}
}
TY - JOUR AU - John T. Baldwin AU - Kitty Holland TI - Constructing $\omega $-stable structures: Computing rank JO - Fundamenta Mathematicae PY - 2001 SP - 1 EP - 20 VL - 170 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm170-1-1/ DO - 10.4064/fm170-1-1 LA - en ID - 10_4064_fm170_1_1 ER -
John T. Baldwin; Kitty Holland. Constructing $\omega $-stable structures: Computing rank. Fundamenta Mathematicae, Tome 170 (2001) no. 1, pp. 1-20. doi: 10.4064/fm170-1-1
Cité par Sources :