Almost-free $E(R)$-algebras and $E(A,R)$-modules
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 175-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a unital commutative ring and $A$ a unital
$R$-algebra. We introduce the category of $E(A,R)$-modules which
is a natural extension of the category of $E$-modules. The
properties of $E(A,R)$-modules are studied; in particular we
consider the subclass of $E(R)$-algebras. This subclass is of
special interest since it coincides with the class of $E$-rings
in the case $R={\mathbb Z}$. Assuming diamond
$\diamond $, almost-free $E(R)$-algebras of cardinality $\kappa
$ are constructed for any regular non-weakly compact cardinal
$\kappa > \aleph _0$ and suitable $R$. The set-theoretic
hypothesis can be weakened.
Keywords:
unital commutative ring unital r algebra introduce category modules which natural extension category e modules properties modules studied particular consider subclass algebras subclass special interest since coincides class e rings mathbb assuming diamond diamond almost free algebras cardinality kappa constructed regular non weakly compact cardinal kappa aleph suitable set theoretic hypothesis weakened
Affiliations des auteurs :
Rüdiger Göbel 1 ; Lutz Strüngmann 1
@article{10_4064_fm169_2_6,
author = {R\"udiger G\"obel and Lutz Str\"ungmann},
title = {Almost-free $E(R)$-algebras and $E(A,R)$-modules},
journal = {Fundamenta Mathematicae},
pages = {175--192},
publisher = {mathdoc},
volume = {169},
number = {2},
year = {2001},
doi = {10.4064/fm169-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-6/}
}
TY - JOUR AU - Rüdiger Göbel AU - Lutz Strüngmann TI - Almost-free $E(R)$-algebras and $E(A,R)$-modules JO - Fundamenta Mathematicae PY - 2001 SP - 175 EP - 192 VL - 169 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-6/ DO - 10.4064/fm169-2-6 LA - en ID - 10_4064_fm169_2_6 ER -
Rüdiger Göbel; Lutz Strüngmann. Almost-free $E(R)$-algebras and $E(A,R)$-modules. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 175-192. doi: 10.4064/fm169-2-6
Cité par Sources :