Representations of the direct product of matrix algebras
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 145-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose $B$ is a unital algebra which is an algebraic product of full matrix algebras over an index set $X$. A bijection is set up between the equivalence classes of irreducible representations of $B$ as operators on a Banach space and the $\sigma $-complete ultrafilters on $X$ (Theorem 2.6). Therefore, if $X$ has less than measurable cardinality (e.g. accessible), the equivalence classes of the irreducible representations of $B$ are labeled by points of $X$, and all representations of $B$ are described (Theorem 3.3).
DOI : 10.4064/fm169-2-4
Keywords: suppose unital algebra which algebraic product full matrix algebras index set bijection set between equivalence classes irreducible representations operators banach space sigma complete ultrafilters theorem therefore has measurable cardinality accessible equivalence classes irreducible representations labeled points representations described theorem

Daniele Guido 1 ; Lars Tuset 2

1 Dipartimento di Matematica Università di Roma “Tor Vergata” I-00133 Roma, Italy Present address: Dipartimento di Matematica Università della Basilicata Contrada Macchia Romana I-85100 Potenza, Italy
2 Dipartimento di Matematica Università di Roma “Tor Vergata” I-00133 Roma, Italy Present address: Faculty of Engineering Oslo University College Cort Adelers Gate 30 0254 Oslo, Norway
@article{10_4064_fm169_2_4,
     author = {Daniele Guido and Lars Tuset},
     title = {Representations of the direct product of matrix algebras},
     journal = {Fundamenta Mathematicae},
     pages = {145--160},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2001},
     doi = {10.4064/fm169-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-4/}
}
TY  - JOUR
AU  - Daniele Guido
AU  - Lars Tuset
TI  - Representations of the direct product of matrix algebras
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 145
EP  - 160
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-4/
DO  - 10.4064/fm169-2-4
LA  - en
ID  - 10_4064_fm169_2_4
ER  - 
%0 Journal Article
%A Daniele Guido
%A Lars Tuset
%T Representations of the direct product of matrix algebras
%J Fundamenta Mathematicae
%D 2001
%P 145-160
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-4/
%R 10.4064/fm169-2-4
%G en
%F 10_4064_fm169_2_4
Daniele Guido; Lars Tuset. Representations of the direct product of matrix algebras. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 145-160. doi : 10.4064/fm169-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-4/

Cité par Sources :