Homotopy decompositions of orbit spaces and the Webb conjecture
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 105-137.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be a prime number. We prove that if $G$ is a compact Lie group with a non-trivial $p$-subgroup, then the orbit space $(B{\cal A}_p(G))/G$ of the classifying space of the category associated to the $G$-poset ${\cal A}_p(G)$ of all non-trivial elementary abelian $p$-subgroups of $G$ is contractible. This gives, for every $G$-CW-complex $X$ each of whose isotropy groups contains a non-trivial $p$-subgroup, a decomposition of $X/G$ as a homotopy colimit of the functor $X^{E_n}/(NE_0\cap \mathinner {\ldotp \ldotp \ldotp }\cap NE_n)$ defined over the poset $(\mathop {\rm sd}\nolimits {\cal A}_p(G))/G$, where $\mathop {\rm sd}\nolimits $ is the barycentric subdivision. We also investigate some other equivariant homotopy and homology decompositions of $X$ and prove that if $G$ is a compact Lie group with a non-trivial $p$-subgroup, then the map $EG\times _G B{\cal A}_p(G)\to BG$ induced by the $G$-map $B{\cal A}_p(G)\to *$ is a mod $p$ homology isomorphism.
DOI : 10.4064/fm169-2-2
Keywords: prime number prove compact lie group non trivial p subgroup orbit space cal classifying space category associated g poset cal non trivial elementary abelian p subgroups contractible gives every g cw complex each whose isotropy groups contains non trivial p subgroup decomposition homotopy colimit functor cap mathinner ldotp ldotp ldotp cap defined poset mathop nolimits cal where mathop nolimits barycentric subdivision investigate other equivariant homotopy homology decompositions prove compact lie group non trivial p subgroup map times cal induced g map cal * mod homology isomorphism

Jolanta S/lomi/nska 1

1 Faculty of Mathematics and Information Sciences Technical University of Warsaw Pl. Politechniki 1 00-661 Warszawa, Poland
@article{10_4064_fm169_2_2,
     author = {Jolanta S/lomi/nska},
     title = {Homotopy decompositions of orbit spaces
and the {Webb} conjecture},
     journal = {Fundamenta Mathematicae},
     pages = {105--137},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2001},
     doi = {10.4064/fm169-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-2/}
}
TY  - JOUR
AU  - Jolanta S/lomi/nska
TI  - Homotopy decompositions of orbit spaces
and the Webb conjecture
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 105
EP  - 137
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-2/
DO  - 10.4064/fm169-2-2
LA  - en
ID  - 10_4064_fm169_2_2
ER  - 
%0 Journal Article
%A Jolanta S/lomi/nska
%T Homotopy decompositions of orbit spaces
and the Webb conjecture
%J Fundamenta Mathematicae
%D 2001
%P 105-137
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-2/
%R 10.4064/fm169-2-2
%G en
%F 10_4064_fm169_2_2
Jolanta S/lomi/nska. Homotopy decompositions of orbit spaces
and the Webb conjecture. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 105-137. doi : 10.4064/fm169-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-2/

Cité par Sources :