Homotopy decompositions of orbit spaces
and the Webb conjecture
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 105-137
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be a prime number. We prove that if $G$ is a compact
Lie group with a non-trivial $p$-subgroup, then the orbit space
$(B{\cal A}_p(G))/G$ of the classifying space of the
category associated to the $G$-poset ${\cal A}_p(G)$ of all
non-trivial elementary abelian $p$-subgroups of $G$ is
contractible. This gives, for every $G$-CW-complex $X$ each of
whose isotropy groups contains a non-trivial $p$-subgroup, a
decomposition of $X/G$ as a homotopy colimit of the functor
$X^{E_n}/(NE_0\cap \mathinner {\ldotp \ldotp \ldotp }\cap NE_n)$
defined over the poset $(\mathop {\rm sd}\nolimits
{\cal A}_p(G))/G$, where $\mathop {\rm
sd}\nolimits $ is the barycentric subdivision. We also
investigate some other equivariant homotopy and homology
decompositions of $X$ and prove that if $G$ is a compact Lie
group with a non-trivial $p$-subgroup, then the map $EG\times _G
B{\cal A}_p(G)\to BG$ induced by the $G$-map $B{\cal
A}_p(G)\to *$ is a mod $p$ homology isomorphism.
Keywords:
prime number prove compact lie group non trivial p subgroup orbit space cal classifying space category associated g poset cal non trivial elementary abelian p subgroups contractible gives every g cw complex each whose isotropy groups contains non trivial p subgroup decomposition homotopy colimit functor cap mathinner ldotp ldotp ldotp cap defined poset mathop nolimits cal where mathop nolimits barycentric subdivision investigate other equivariant homotopy homology decompositions prove compact lie group non trivial p subgroup map times cal induced g map cal * mod homology isomorphism
Affiliations des auteurs :
Jolanta S/lomi/nska 1
@article{10_4064_fm169_2_2,
author = {Jolanta S/lomi/nska},
title = {Homotopy decompositions of orbit spaces
and the {Webb} conjecture},
journal = {Fundamenta Mathematicae},
pages = {105--137},
year = {2001},
volume = {169},
number = {2},
doi = {10.4064/fm169-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-2/}
}
Jolanta S/lomi/nska. Homotopy decompositions of orbit spaces and the Webb conjecture. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 105-137. doi: 10.4064/fm169-2-2
Cité par Sources :