Lusin sequences under CH and under Martin's Axiom
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 97-103.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assuming the continuum hypothesis there is an inseparable sequence of length $\omega _1$ that contains no Lusin subsequence, while if Martin's Axiom and $\neg \rm CH$ are assumed then every inseparable sequence (of length $\omega _1$) is a union of countably many Lusin subsequences.
DOI : 10.4064/fm169-2-1
Keywords: assuming continuum hypothesis there inseparable sequence length omega contains lusin subsequence while martins axiom neg assumed every inseparable sequence length omega union countably many lusin subsequences

Uri Abraham 1 ; Saharon Shelah 2

1 Departments of Mathematics and Computer Science Ben-Gurion University Beer-Sheva, Israel
2 Institute of Mathematics The Hebrew University 91904 Jerusalem, Israel
@article{10_4064_fm169_2_1,
     author = {Uri Abraham and Saharon Shelah},
     title = {Lusin sequences under {CH} and under {Martin's} {Axiom}},
     journal = {Fundamenta Mathematicae},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2001},
     doi = {10.4064/fm169-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-1/}
}
TY  - JOUR
AU  - Uri Abraham
AU  - Saharon Shelah
TI  - Lusin sequences under CH and under Martin's Axiom
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 97
EP  - 103
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-1/
DO  - 10.4064/fm169-2-1
LA  - en
ID  - 10_4064_fm169_2_1
ER  - 
%0 Journal Article
%A Uri Abraham
%A Saharon Shelah
%T Lusin sequences under CH and under Martin's Axiom
%J Fundamenta Mathematicae
%D 2001
%P 97-103
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-1/
%R 10.4064/fm169-2-1
%G en
%F 10_4064_fm169_2_1
Uri Abraham; Saharon Shelah. Lusin sequences under CH and under Martin's Axiom. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 97-103. doi : 10.4064/fm169-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-1/

Cité par Sources :