Lusin sequences under CH and under Martin's Axiom
Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 97-103
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Assuming the continuum hypothesis there is an inseparable
sequence of length $\omega _1$ that contains no Lusin
subsequence, while if Martin's Axiom and $\neg \rm CH$
are assumed then every inseparable sequence (of length $\omega
_1$) is a union of countably many Lusin subsequences.
Keywords:
assuming continuum hypothesis there inseparable sequence length omega contains lusin subsequence while martins axiom neg assumed every inseparable sequence length omega union countably many lusin subsequences
Affiliations des auteurs :
Uri Abraham 1 ; Saharon Shelah 2
@article{10_4064_fm169_2_1,
author = {Uri Abraham and Saharon Shelah},
title = {Lusin sequences under {CH} and under {Martin's} {Axiom}},
journal = {Fundamenta Mathematicae},
pages = {97--103},
year = {2001},
volume = {169},
number = {2},
doi = {10.4064/fm169-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm169-2-1/}
}
Uri Abraham; Saharon Shelah. Lusin sequences under CH and under Martin's Axiom. Fundamenta Mathematicae, Tome 169 (2001) no. 2, pp. 97-103. doi: 10.4064/fm169-2-1
Cité par Sources :