A non-$\cal Z$-compactifiable polyhedron whose product with the Hilbert cube is $\cal Z$-compactifiable
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 165-197.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a locally compact 2-dimensional polyhedron $X$ which does not admit a ${\cal Z}$-compactification, but which becomes ${\cal Z}$-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.
DOI : 10.4064/fm168-2-6
Keywords: construct locally compact dimensional polyhedron which does admit cal compactification which becomes cal compactifiable crossing hilbert cube answers long standing question posed chapman siebenmann repeated versions problems infinite dimensional topology solution corrects error problem list

C. R. Guilbault 1

1 Department of Mathematical Sciences University of Wisconsin-Milwaukee Milwaukee, WI 53201, U.S.A.
@article{10_4064_fm168_2_6,
     author = {C. R. Guilbault},
     title = {A non-$\cal Z$-compactifiable polyhedron
whose product with the {Hilbert} cube
is $\cal Z$-compactifiable},
     journal = {Fundamenta Mathematicae},
     pages = {165--197},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2001},
     doi = {10.4064/fm168-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/}
}
TY  - JOUR
AU  - C. R. Guilbault
TI  - A non-$\cal Z$-compactifiable polyhedron
whose product with the Hilbert cube
is $\cal Z$-compactifiable
JO  - Fundamenta Mathematicae
PY  - 2001
SP  - 165
EP  - 197
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/
DO  - 10.4064/fm168-2-6
LA  - en
ID  - 10_4064_fm168_2_6
ER  - 
%0 Journal Article
%A C. R. Guilbault
%T A non-$\cal Z$-compactifiable polyhedron
whose product with the Hilbert cube
is $\cal Z$-compactifiable
%J Fundamenta Mathematicae
%D 2001
%P 165-197
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/
%R 10.4064/fm168-2-6
%G en
%F 10_4064_fm168_2_6
C. R. Guilbault. A non-$\cal Z$-compactifiable polyhedron
whose product with the Hilbert cube
is $\cal Z$-compactifiable. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 165-197. doi : 10.4064/fm168-2-6. http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/

Cité par Sources :