A non-$\cal Z$-compactifiable polyhedron
whose product with the Hilbert cube
is $\cal Z$-compactifiable
Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 165-197
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct a locally compact 2-dimensional polyhedron $X$
which does not admit a ${\cal Z}$-compactification, but
which becomes ${\cal Z}$-compactifiable upon crossing with
the Hilbert cube. This answers a long-standing question posed by
Chapman and Siebenmann in 1976 and repeated in the 1976, 1979
and 1990 versions of Open Problems in
Infinite-Dimensional Topology. Our solution corrects an error
in the 1990 problem list.
Keywords:
construct locally compact dimensional polyhedron which does admit cal compactification which becomes cal compactifiable crossing hilbert cube answers long standing question posed chapman siebenmann repeated versions problems infinite dimensional topology solution corrects error problem list
Affiliations des auteurs :
C. R. Guilbault 1
@article{10_4064_fm168_2_6,
author = {C. R. Guilbault},
title = {A non-$\cal Z$-compactifiable polyhedron
whose product with the {Hilbert} cube
is $\cal Z$-compactifiable},
journal = {Fundamenta Mathematicae},
pages = {165--197},
year = {2001},
volume = {168},
number = {2},
doi = {10.4064/fm168-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/}
}
TY - JOUR AU - C. R. Guilbault TI - A non-$\cal Z$-compactifiable polyhedron whose product with the Hilbert cube is $\cal Z$-compactifiable JO - Fundamenta Mathematicae PY - 2001 SP - 165 EP - 197 VL - 168 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/ DO - 10.4064/fm168-2-6 LA - en ID - 10_4064_fm168_2_6 ER -
%0 Journal Article %A C. R. Guilbault %T A non-$\cal Z$-compactifiable polyhedron whose product with the Hilbert cube is $\cal Z$-compactifiable %J Fundamenta Mathematicae %D 2001 %P 165-197 %V 168 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm168-2-6/ %R 10.4064/fm168-2-6 %G en %F 10_4064_fm168_2_6
C. R. Guilbault. A non-$\cal Z$-compactifiable polyhedron whose product with the Hilbert cube is $\cal Z$-compactifiable. Fundamenta Mathematicae, Tome 168 (2001) no. 2, pp. 165-197. doi: 10.4064/fm168-2-6
Cité par Sources :